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Fluctuations and thermodynamics properties of the constant shear
strain ensemble
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We develop the statistical mechanics of a pair of new ensembles called the constant shear strain
ensembles that include the uniform dilation ensemble used frequently in computer simulations. We
present a direct calculation of fluctuation formulas for the elastic constants, the specific heat, and the
thermal expansion tensor in these new ensembles. ©2001 American Institute of Physics.
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I. INTRODUCTION

The fluctuation formula is very useful in computer sim
lation since it can avoid the differentiating calculation th
may need long computational time. A well-known examp
of the fluctuation formula is that the specific heat in cano
cal ensemble can be found by calculating the fluctuation
energy instead of differentiating energy with respect to te
perature.

There are many ensembles of statistical mechanics u
in molecular dynamics~MD! simulation. The microcanonica
(EVN) ensemble,1 canonical (TVN) ensemble,2–4 isoenthal
pic–isobaric (HPN) ensemble,5,6 and isothermal–isobaric
(TPN) ensemble1,5,6 are often used to simulate the system
well-known symmetry. WhereE is the energy,V is the vol-
ume,N is the particle number,T is the temperature,H is the
enthalpy, andP is the hydrostatic pressure of the system.
deal with anisotropic solids subjected to arbitrary stress, P
rinello and Rahman modified Andersen’s method for (HPN)
ensemble5 to develop a new ensemble called the (HsN)
ensemble,7–9 wheres is the applied stress tensor and is ke
as a constant in simulation. Furthermore, the (EhN),
(ThN), (TsN), (HtN), and (TtN) ensembles8,10–15 were
also proposed to simulate the anisotropic systems, witht be-
ing the thermodynamic stress tensor andh being the tensor
constructed from the three vectors forming a parallelpip
which is the periodically repeating MD cell.

The difference among these ensembles, in the termi
ogy of thermodynamics, is the choice of the different set
independent variables for specifying the thermodynam
state of the system. In general, the different constraint on
system leads to a different choice of the independent v
ables and so the different thermodynamic function and fl
tuation formula. For instance, in the (HsN) ensembleh can
fluctuate but in the (EhN) ensembleh is a constant so tha
the fluctuation formulas between the (HsN) ensemble and
the (EhN) ensemble are quite different, as we can see in
next section.

It could be thought that whens was isotropic, the
(HsN) or (TsN) ensembles would be reduced into t
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(HPN) or (TPN) ensembles. But this is only true if there
not any other constraint on the system except fors being
isotropic. However, in the (HPN) or (TPN) ensembles, the
shape of the MD cell cannot change so it may prevent
structural transformation which may happen in the (HsN)
or (TsN) ensembles even with isotropics.8 This is because
the variation of the shear strain is allowed in the (HsN) or
(TsN) ensembles but is inhibited in the (HPN) or (TPN)
runs, as we shall show in Sec. III. Therefore, the exist
fluctuation formula obtained from the (HsN) or (TsN) en-
sembles may be no longer valid in the (HPN) or (TPN)
ensembles. Since the (TPN) and (HPN) ensembles are
among the most commonly used ensembles in comp
simulations, to find the correct fluctuation properties in the
ensembles is a significant topic.

In this paper we introduce a pair of new ensembl
which includes both the (HPN) and (TPN) ensembles, in
classical statistical mechanics. The new ensembles are c
acterized by choosing the diagonal components ofs and the
off-diagonal components of strain~shear strain! as indepen-
dent variables so we call them as constant shear strain
sembles. We derive the fluctuation formulas for the elas
constants, the specific heat and the thermal expansion te
in these ensembles. We indicate that in computer simulat
these new formulas work practically only for four kinds
the shape of the MD unit cell which correspond to the syst
with orthogonal or hexagonal or tetragonal or cubic symm
try.

This paper is organized as follows. We make a sh
review about some well-known fluctuation formulas in t
next section for the convenience of comparison. In Sec.
we first give the reason why it needs to introduce the c
stant shear strain ensemble and then present the formul
of the (H,s i i ,h i j ,N,iÞ j ) ensemble, whereh is the La-
grangian strain tensor. In Sec. IV we derive the fluctuat
formulas for (H,s i i ,h i j ,N,iÞ j ) ensemble. In Sec. V, we
discuss shortly about the results in the (T,s i i ,h i j ,N,iÞ j )
ensemble, a pair ensemble of the (H,s i i ,h i j ,N,iÞ j ) en-
semble. And we conclude with a discussion.
9 © 2001 American Institute of Physics
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II. FLUCTUATION IN THE „EhN…, „ThN …, „HtN …, AND
„TtN … ENSEMBLES

Assuming the system is described by the Hamiltonia

H5H~q,p,h,N!, ~2.1!

whereq andp represent the coordinates and momenta of
N particles, the existing fluctuation formulas in MD can
divided into the following two categories.

~1! The ensembles with constanth. It includes both
(EhN) and (ThN) ensembles. (EVN) and (TVN) en-
sembles also belong to this category. In these ensembls
and t are allowed to fluctuate buth and soh are kept fixed.
The formulas for either adiabatic elastic constants (CS) or
isothermal elastic constants (CT) are12,13,15,16

Ci jkl 5
1

V0
K ]2H

]h i j ]hkl
L

h50

2
V0

kBT
D~ t i j tkl!h50 , ~2.2!

where V0 is the volume of the system at reference st
which can be either stressed or stress-free,kB the Boltzmann
constant,D(AB)5^AB&2^A&^B&, and thê . . . & designates
ensemble averages.

In (ThN) ensemble, Eq.~2.2! can be derived straightfor
ward from

F52kBT ln Z, ~2.3!

Z5
1

CE e2H/kBT dt, ~2.4!

and the definition of elastic constants

Ci jkl
T 5

1

V0
S ]2F

]h i j ]hkl
D

T,h50

52S ]t i j

]hkl
D

h50

, ~2.5!

whereC is a constant anddt the differential volume elemen
in 6-N-dimensional phase space.

The specific heatCh can be found from

D~K2!5
3

2
N~kBT!2S 12

3NkB

2Ch
D ~2.6!

in (EhN) ensemble, whereK is the kinetic energy of the
system.

In (ThN) ensemble, the specific heat is

D~H 2!5kBT2Ch . ~2.7!

The thermal expansion tensora5(]h/]T)s in (EhN) can
be obtained from

V0

kBT
D~ t i j K !1 K ]K

]h i j
L 52

3NkBTV0(klCi jkl
S akl

2Ch
. ~2.8!

In the (ThN) ensemble, the formula is

D~ t i j H!5kBT2(
kl

Ci jkl
T akl . ~2.9!

~2! The ensembles with constants or t that include the
(HsN), (TsN), (HtN), and the (TtN) ensembles. In thes
ensemblesh and soh are allowed to fluctuate buts or t are
kept fixed. The corresponding formula for the elastic co
stants is10,17
Downloaded 22 Sep 2009 to 163.13.32.114. Redistribution subject to AIP
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kBT

V0
~C! i jkl

21 5D~h i j hkl!. ~2.10!

Similar to Eq.~2.2!, in the (TtN) ensemble Eq.~2.10!
can be derived from

A52kBT ln Q,

Q5
1

CE e2(H1V0 Tr(th))/kBT dt, ~2.11!

and the definition ofCT. Where the integral is over all 3N
coordinates, 3N momenta, and six independent microscop
strain componentse i j .

The specific heatCs in the (HsN) ensemble can be
found from

D~K2!5
3

2
N~kBT!2S 12

3NkB

2Cs
D . ~2.12!

It is in the same form as that of the (EhN) ensemble.
In the (TsN) ensemble, the specific heat is

D~H82!5kBT2Cs , ~2.13!

where

H85H1V0 Tr~sh!. ~2.14!

The thermal expansion tensor for the (HsN) ensemble
becomes

D~h i j K !52
3

2
N~kBT!2

a i j

Cs
, ~2.15!

and for the (TsN) ensemble

D~h i j H8!5kBT2a i j . ~2.16!

Before ending this section, we point out that Eqs.~2.8!
~2.9!, ~2.13!, and~2.16! do not seem to be available in litera
tures. An isotropic form@i.e., in the (EVN) ensemble# of Eq.
~2.8! can be found in Ref. 18.

III. FORMULATION OF THE „H,s i i ,h i j ,N,iÅ j …
ENSEMBLE

It is easy to show that the uniform dilation correspon
to keep a vanishing shear strain.

Let h5(a,b,c), wherea,b, and c are the three vectors
forming the MD cell, then the definition of strain in MD i
~see, for instance, Refs. 12 and 13!,

h5 1
2 ~h08

21Gh0
2121!, ~3.1!

whereh0 is the reference value ofh, G is the metric tensor
given byG5h8h, and the prime indicates matrix transpos
If we consider a system with the constraint of the const
angle19 so h can be written

h5gL, with h05gL0 , ~3.2!

where g is a constant matrix andL0 , L are the diagonal
matrix, L0i j

5 l 0i
d i j andLi j 5 l id i j , it is not difficult to show

that h is diagonal if and only if one of the following thre
conditions is satisfied.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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8771J. Chem. Phys., Vol. 114, No. 20, 22 May 2001 Constant shear strain ensemble
~1! l 1 / l 01
5 l 2 / l 02

andc is perpendicular to botha andb so
that one can writeg3i5gi35d i3 . It includes the system
with hexagonal or tetragonal or cubic symmetry.

~2! g is a unit matrix, i.e., a system of tetragonal or orthog
nal or cubic symmetry.

~3! l 1 / l 01
5 l 2 / l 02

5 l 3 / l 03
, i.e., a system of uniform dilation

Note that in general the condition of the constant an
does not lead to a vanishing shear strain, nor even a con
shear strain. Therefore to derive the general formulas w
constant angle ensemble will be more practical. Howeve
does not seem to be a simple issue, since for the cons
angle ensemble in general the six components of strain
not independent. On the other hand, to express explicitly
general conditions of the constant shear strain in term
components ofh is also not a simple task. Fortunately, th
above three cases with vanishing shear strain contain alm
all the situations of interest in the computer simulation
the isobaric ensemble so that to find the general condit
for the constant shear strain may not be a necessity. We
then investigate the simpler constant shear strain ensemb
in this work instead of the constant angle ensemble.

From the above arguments, in computer simulation
may work on a constant shear strain ensemble. In such
ensemble the independent variables must bes i i andh i j with
iÞ j . It is obvious that Eq.~2.10! fails to provide correct
elastic constant for those components related to the fluc
tion of shear strain and so we may need some new fluc
tion formulas. An interesting thing is that this is an ensem
‘‘between’’ constants and constanth so that we can expec
to find formulas partly the same as that of the constans
ensemble and partly the same as that of the constanth en-
semble. Moreover, we can develop two ensembles by ch
ing two sets of independent variables, one is
(H,s i i ,h i j ,N,iÞ j ) ensemble and the other th
(T,s i i ,h i j ,N,iÞ j ) ensemble. SinceN will always be fixed
and iÞ j or ~and! kÞ l always required in the following o
this paper, we shall suppress them.

Following the derivation for theHsN ensemble,10 we
can define the (H,s i i ,h i j ) ensemble by using the phase vo
ume via

f~H,s i i ,h i j !5E
H<H2V0(

i
s i i e i i

dq dp de11de22de33,

~3.3!

whereH is the enthalpy, the integral in Eq.~3.3! is over all
3N coordinates, 3N momenta, and three independent diag
nal microscopic strain componentse i i .

The enthalpyH is defined by

H5E1V0(
i

s i i h i i , ~3.4!

where E is the energy of the system andh i i 5^e i i &. The
phase volume can be written

f~H,s i i ,h i j !5E uS H2S H2V0(
i

s i i e i i D Ddt, ~3.5!

where the step function
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u~x!5H 1 x,0,

0 x.0,
~3.6!

and dt5dq dp de11de22de33. The density of states
v(H,s i i ,h i j ) is defined by

v5S ]f

]H D
s i i ,h i j

5E dS H2S H2(
i

V0s i i e i i D Ddt,

~3.7!

whered is the Dirac delta function. The normalized pro
ability densityW(q,p,e i i ) is

W~q,p,e i i !5
d~H2~H2( iV0s i i e i i !!

v
. ~3.8!

The average value of any quantityf (q,p,h i j ,s i i ) is deter-
mined from^ f &5*W f dt. The entropy is defined by

S~H,s i i ,h i j !5kB ln f~H,s i i ,h i j !. ~3.9!

We have omitted various constant factors which would r
der f dimensionless since these constant factors would
appear in any of our final results. From Eq.~3.9!, we obtain
for the temperature

T5S ]S

]H D
s i i ,h i j

5
f

kBv
. ~3.10!

The similar arguments as those used in the microcanon
ensemble18,20 leads to the equipartition theorem

K xj

]H
]xk

L 5
f

v
d jk , ~3.11!

wherexi stands for one ofq or p variables.
Next we consider the adiabatic theorem for this e

semble. The Hamiltonian is now assumed to be dependen
an additional external parameter, sayy. The generalized
force associated with this parameter is]H/]y. Calculating
the average value of this generalized force, just as in
microcanonical ensemble,18,20 leads to the adiabatic theorem

K ]H
]y L 5

1

vE ]H
]y

dS H2S H2(
i

V0s i i e i i D Ddt

52
1

v S ]f

]y D
H,s i i ,h i j

5S ]H

]y D
S,s i i ,h i j

. ~3.12!

IV. FLUCTUATION IN THE „H,s i i ,h i j … ENSEMBLE

The thermodynamic law in the (H,s i i ,h i j ) ensemble is

dH5T dS1V0(
i

h i i ds i i 2V0(
iÞ j

s i j dh i j . ~4.1!

It follows

V0h i i 5S ]H

]s i i
D

S

,

~4.2!

V0s i j 52S ]H

]h i j
D

S

.
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We can derive the fluctuation formulas of the adiaba
elastic constants in a similar way as Rayet al. did.10,18,21

Defining a potential

Xii 5E e i i uS H2S H2V0(
i

s i i e i i D Ddt, ~4.3!

using Eq.~4.2! we obtain

S ]Xii

]s j j
D

S

5E e i i dS H2S H2(
i

V0s i i e i i D D
3~V0^e j j &2V0e j j !dt

52vV0~^e i i e j j &2^e i i &^e j j &!

52vV0D~e i i e j j !. ~4.4!

For a system of many degrees of freedom, the approxima
Xii 5^e i i &f5h i i f is very accurate, hence Eq.~4.4! becomes

D~e i i e j j !52
f

vV0
S ]h i i

]s j j
D

S

. ~4.5!

Using Eq.~3.10! we can further reduce the above equati
into

D~e i i e j j !5
kBT

V0
~Cii j j

S !21. ~4.6!

To derive the formula for the elastic constants withiÞ j and
kÞ l , we introduce a new function,

Z~H,s i i ,h i j !5E Si j uS H2S H2V0(
i

s i i e i i D Ddt,

~4.7!

whereSi j is the microscopic stress tensor defined by

V0Si j 52
]H
]h i j

. ~4.8!

We have

S ]Z

]hkl
D

S

5E ]Si j

]hkl
uS H2S H2V0(

i
s i i e i i D Ddt

2E Si j dS H2S H2V0(
i

s i i e i i D D
3S ]H

]hkl
2S ]H

]hkl
D

S
D dt

52
1

V0
E ]2H

]h i j ]hkl

3uS H2S H2V0(
i

s i i e i i D Ddt

1V0E Si j SkldS H2S H2V0(
i

s i i e i i D Ddt

2V0^Si j &^Skl&v. ~4.9!

Again, by usingZ5^Si j &f and
Downloaded 22 Sep 2009 to 163.13.32.114. Redistribution subject to AIP
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E ]2H
]h i j ]hkl

uS H2S H2V0(
i

s i i e i i D Ddt5 K ]2H
]h i j ]hkl

L f,

~4.10!

we get

2fS ]^Si j &
]hkl

D
S

5
f

V0
K ]2H

]h i j ]hkl
L 2vV0^Si j Skl&

1vV0^Si j &^Skl& ~4.11!

or

~CS! i j ,kl5
1

V0
K ]2H

]h i j ]hkl
L 2

V0

kBT
D~Si j Skl!. ~4.12!

Note that Eq.~4.6! has exactly the same form as Eq.~2.10!
and Eq.~4.12! is the same as Eq.~2.2!.

Next we consider the specific heat. Define a new pot
tial Y by

Y~H,s i i ,h i j ,l!5E KuS H2S H2V0(
i

s i i e i i D Ddt,

~4.13!

where K5((p2/2m)5l((p2/2) is the kinetic energy and
l5m21 is the reciprocal mass of the particles. Differenti
tion of Y/l with respect tol yields

2
l2

v S ]~Y/l!

]l D
S,s i i ,h i j

5E KdS H2S H2(
i

V0s i i e i i D D
3S ]H

]l
2S ]H

]l D
S,s i i ,h i j

D dt

5D~K2!5^K2&2^K2&.

Using Y5^K&f, we obtain

D~K2!52
l2f

v S ]~^K&/l!

]l D
S,s i i ,h i j

5kBTS ^K&2lS ]^K&
]l D

S,s i i ,h i j

D .

Furthermore, by using

S ]^K&
]l D

S,s i i ,h i j

5S ]^K&
]l D

H,s i i ,h i j

1S ]^K&
]H D

l,s i i ,h i j

S ]H

]l D
S,s i i ,h i j

and the adiabatic theorem

S ]H

]l D
S,s i i ,h i j

5
^]H&
]l

5
^K&
l

5
3NkBT

2l
,

S ]^K&
]H D

l,s i i ,h i j

5
3NkB

2Cs i i ,h i j

, ~4.14!

we find
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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D~K2!5
3

2
N~kBT!2S 12

3NkB

2Cs i i ,h i j
D , ~4.15!

whereCs i i
5(]H/]T)s i i ,h i j

is the specific heat. Again, it is
interesting to note that Eq.~4.15! has the same form as Eq
~2.6!. The equation (]^K&/]l)H,s i i ,h i j

50 was used in the
above derivation and it can be shown as follows. Using
definition of f, we obtain

S ]f

]l D
H,s i i ,h i j

52
v

l
^K&. ~4.16!

It follows, together with Eqs.~3.9!–~3.11!,

S ]S

]l D
H,s i i ,h i j

52
3NkB

2l
, ~4.17!

so

S52
3NkB

2
ln l1 f ~H,s i i ,h i j !, ~4.18!

where f (H,s i i ,h i j ) is an arbitrary function ofH,s i i , and
h i j . Since the temperature is defined by

T215S ]S

]H D
s i i ,h i j ,l

5S ] f ~H,s i i ,h i j !

]H D
s i i ,h i j

, ~4.19!

it is independent onl and so is for̂ K&.
Now we consider the diagonal components of the th

mal expansion tensor. DifferentiatingXii with respect tol
yields

S ]Xii

]l D
S,s i i ,h i j

52E e i i dS H2S H2V0(
i

s i i e i i D D •S ]H
]l

2S ]H

]l D
S,s i i ,h i j

D dt52
v

l
D~e i i K ! ~4.20!

or

D~e i i K !52lkBTS ]^e i i &
]l D

S,s i i ,h i j

. ~4.21!

This can be further reduced into, following Refs. 10,18 a
21,

D~e i i K !52
3

2
N~kBT!2

a i i

Cs i i ,h i j

. ~4.22!

It is exactly in the same form as Eq.~2.15!.
We find no way to calculate the remaining compone

of CS ~i.e., the crossover components withi 5 j but kÞ l or
iÞ j but k5 l ) and a ~the off-diagonal components! in the
new ensembles. This is because they relate to the differe
of the independent variabless i i or ~and! h i j , which do not
fluctuate in this ensemble. However, to find the elastic c
stants in a system of isotropic or cubic or hexagonal or
thogonal symmetry, it is enough to find the components w
i 5 j ,k5 l and iÞ j , kÞ l .
Downloaded 22 Sep 2009 to 163.13.32.114. Redistribution subject to AIP
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V. RESULTS FOR THE „T,s i i ,h i j … ENSEMBLE

To derive the expressions in the (T,s i i ,h i j ) ensemble is
a little simpler. The thermodynamic potentialA in the en-
semble is

A5E2TS1V0(
i

s i i h i i . ~5.1!

Note thatA is neither the usual Helmholtz free energy n
the Gibbs free energy. The thermodynamic law is

dA52S dT1V0(
i

h i i ds i i 2V0(
iÞ j

s i j dh i j , ~5.2!

follows

s i j 52
1

V0
S ]A

] h i j
D

T,s i i

, h i i 5
1

V0
S ]A

] s i i
D

T,h i j

. ~5.3!

The fundamental connection between thermodynam
and statistical mechanics gives

A52kBT ln Q, ~5.4!

Q5
1

CE e2(H1V0( is i i e i i )/kBT dt. ~5.5!

It is straightforward to derive

kBT

V0
~CT! i i j j

215D~e i i e j j !, ~5.6!

~CT! i jkl 5V0K ]2H
]h i j ]hkl

L
h50

2
V0

kBT
D~Si j Skl!h50 . ~5.7!

We find again that Eq.~5.6! is the same as Eq.~2.10! and Eq.
~5.7! is the same as Eq.~2.2!. For a uniform dilation system
this result has been reported in Ref. 22.

Similar to Eq.~2.13!, the specific heat is

D~H82!5kBT2Cs i i ,h i j
, ~5.8!

where

H85H1V0(
i

s i i e i i . ~5.9!

The diagonal part of the thermal expansion tensor becom

D~e i i H8!5kBT2a i i . ~5.10!

Finally, in the same reason as for the (H,s i i ,h i j ) ensemble,
no fluctuation formula is available for the remaining comp
nents ofCT anda.

VI. CONCLUSIONS

We derived the correct fluctuation formulas for the co
stant shear strain ensemble which include the (HPN) and
(TPN) ensembles. Since the (HPN) and (TPN) ensembles
are used so frequent in computer simulations, these form
may be very useful. We found that for a scalar or for tho
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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quantities that are independent on the shear strain, the
tuation formulas in the constant shear strain ensemble are
same as that of constants ensemble. This is not surprisin
since the new ensemble is more like the constants one and
whether the shear strain can or cannot fluctuate has no e
on these quantities. We showed that the fluctuation formu
for the elastic constants are a mixture of that of the cons
h ensemble and the constants ensemble. This is also a natu
ral result since the new ensemble is just ‘‘between’’ const
h and constants ensembles. We also found that unlike co
stanth or constants ensembles, the fluctuation formula for
tensor in the constant shear strain ensemble is incomp
Such an incompleteness could limit the usage of these
mulas. However, if the system has special symmetries e
cially for an isotropic system, the fluctuation formulas w
obtained are enough. Furthermore, our above results are
pendent on neither the detail of the Hamiltonian nor
equation of motion, so it is valid in both Monte Carlo an
MD simulations. We should also point out that these n
formulas work appropriately only for the system with o
thogonal or hexagonal or tetragonal or cubic symmetry.

For the system with a spherically symmetric pair pote
tial f(r ), i.e.,

H5(
a

pa
2

2m
1 (

a.b
F~r ab!, ~6.1!

and in the canonical ensemble, Eq.~2.2! can be reduced fur
ther into23

Cabgt
T 5

1

V K (
i , j

r a~ i j !r b~ i j !r g~ i j !r t~ i j !
1

r 2 S F92
F8

r D L
2

1

kBTV K DS (
i , j

r a~ i j !r b~ i j !
F8

r

•(
i , j

r g~ i j !r t~ i j !
F8

r D L
1

NkBT

V
~dagdbt1datdbg!, ~6.2!

where r a( i j )5r ia2r j a and r i j
2 5(r i2r j )

2. Equation ~6.2!
has been applied successfully into many systems.12,13,22–28

Bearing in mind the similarity between Eqs.~2.2! and ~5.7!,
it is obvious that for those components withaÞb and g
Þt, Eq. ~6.2! still work in the constant shear strain e
sembles and results from MD simulation22 support this con-
clusion.

As pointed out by Spriket al.17 and others,12,13 the rate
of convergence of Eq.~2.10! is unsatisfactory. This can b
understood if one observes that Eq.~2.10! follows the fluc-
tuations in a macroscopic quantity which evolves slowly. W
Downloaded 22 Sep 2009 to 163.13.32.114. Redistribution subject to AIP
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can expect that Eqs.~4.6! or ~5.6! should have the sam
problem. In contrast, Eq.~6.2! which comes from Eqs.~2.2!
or ~5.7! calculates the elastic constants by probing mic
scopic features of the system where fluctuations occur o
shorter time scale and consequently should converge fa
Therefore, to find all the elastic constants it is in gene
much more efficient to first determine the equilibrium latti
constant for the stress of interest using a constants or con-
stant P simulation, and then do a simulation in the corr
sponding constanth ensemble13 using formulas obtained
from Eq. ~2.2! or ~6.2!. However, if we focus on the behav
iors of shear modulus or specific heat, the constant sh
strain ensemble and so the (HPN) and (TPN) ensembles can
be as efficient as that of the constanth ensembles.

So far we do not yet exhaust the possibility of constru
ing the ensembles of statistical mechanics. At least, to de
the general formulas with constant angle ensemble is an
trigue topic. Moreover, for instance, we can define
‘‘uniaxial stress’’ ensemble by choosings11 and all of h i j

excepth11 as independent variables. But such an ensem
does not seem to be useful that it is out of any interest.
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