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We develop the statistical mechanics of a pair of new ensembles called the constant shear strain
ensembles that include the uniform dilation ensemble used frequently in computer simulations. We

present a direct calculation of fluctuation formulas for the elastic constants, the specific heat, and the
thermal expansion tensor in these new ensembles20@1 American Institute of Physics.
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I. INTRODUCTION (HPN) or (TPN) ensembles. But this is only true if there is

The fluctuation formula is very useful in computer simu- N°t @ny other constraint on the system exceptdobeing
lation since it can avoid the differentiating calculation that!SOtropic. However, in theHPN) or (TPN) ensembles, the
may need long computational time. A well-known exampleshape of the MD cell cannot change so it may prevent the
of the fluctuation formula is that the specific heat in canoni-structural transformation which may happen in theo(N)
cal ensemble can be found by calculating the fluctuation obr (ToN) ensembles even with isotropic.® This is because
energy instead of differentiating energy with respect to temthe variation of the shear strain is allowed in th¢xN) or
perature. (ToN) ensembles but is inhibited in thédPN) or (TPN)

There are many ensembles of statistical mechanics usefins, as we shall show in Sec. lll. Therefore, the existing
in molecular dynamicéMD) simulation. The microcanonical  fiyctuation formula obtained from theéd@N) or (ToN) en-
(EVN) ensemblé, canonical TVN) ensemblé;* isoenthal  somples may be no longer valid in thel®N) or (TPN)

. . . ’6 . _. . .
p_|rcP—|sobar|c E:gé\lg enscfatmblé, (??d !SOtrimt]r?I |sol;>ar|c fensembles. Since theTPN) and HPN) ensembles are
(TPN ensem are otten used to simufate the system o among the most commonly used ensembles in computer

well-known symmetry. Wher& is the energyy is the vol- . . . . o
. . . ) simulations, to find the correct fluctuation properties in these
ume,N is the particle numbefT is the temperaturé is the i o i
ensembles is a significant topic.

enthalpy, andP is the hydrostatic pressure of the system. To ; _ .

deal with anisotropic solids subjected to arbitrary stress, Par- N this paper we introduce a pair of new ensembles,
rinello and Rahman modified Andersen’s method féP(y) ~ Which includes both theHPN) and (TPN) ensembles, in
ensembl2 to develop a new ensemble called thid ofN) classical statistical mechanics. The new ensembles are char-
ensembl€;® whereo is the applied stress tensor and is keptacterized by choosing the diagonal components aind the

as a constant in simulation. Furthermore, thEhQ), off-diagonal components of straishear straipas indepen-
(ThN), (ToN), (HtN), and (TtN) ensembles'®®were  dent variables so we call them as constant shear strain en-
also proposed to simulate the anisotropic systems, b+  sembles. We derive the fluctuation formulas for the elastic
ing the thermodynamic stress tensor dnbeing the tensor  constants, the specific heat and the thermal expansion tensor
constructed from the three vectors forming a parallelpipedi these ensembles. We indicate that in computer simulations

which is the periodically repeating MD cell. _ these new formulas work practically only for four kinds of
The difference among these ensembles, in the termino

S _ . rkhe shape of the MD unit cell which correspond to the system
ogy of thermodynamics, is the choice of the different set of . .
- with orthogonal or hexagonal or tetragonal or cubic symme-

independent variables for specifying the thermodynamic
state of the system. In general, the different constraint on th y: ) _ )
system leads to a different choice of the independent vari- 11iS Paper is organized as follows. We make a short
ables and so the different thermodynamic function and flucf€view about some well-known fluctuation formulas in the
tuation formula. For instance, in thélgN) ensemblen can ~ hext section for the convenience of comparison. In Sec. llI
fluctuate but in the EhN) ensembleh is a constant so that Wwe first give the reason why it needs to introduce the con-
the fluctuation formulas between thel¢N) ensemble and stant shear strain ensemble and then present the formulation
the (EhN) ensemble are quite different, as we can see in thef the (H,o;,7;;,N,i#]) ensemble, where; is the La-
next section. grangian strain tensor. In Sec. IV we derive the fluctuation
It could be thought that whew was isotropic, the formulas for H,o;; »7ij,N,i#]) ensemble. In Sec. V, we
(HoN) or (ToN) ensembles would be reduced into the discuss shortly about the results in tHE,&;; , 7;; ,N,i #])
ensemble, a pair ensemble of thie, ¢, 7;; ,N,i#]) en-
dElectronic mail: zzhou@mail.tku.edu.tw semble. And we conclude with a discussion.
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Il. FLUCTUATION IN THE (EhN), (ThN), (HtN), AND kgT .

(TtN) ENSEMBLES V_O(C)iik':A(”” 1) - (2.10
Assuming the system is described by the Hamiltonian Similar to Eq.(2.2), in the (TtN) ensemble Eq(2.10
H="H(q,p, 7,N) (2.1)  can be derived from

whereq andp represent the coordinates and momenta of the A=—kgTIn®,

N particles, the existing fluctuation formulas in MD can be
divided into the following two categories. 0= EJ e~ (Vo T(tn)/keT g 7 (2.1

(1) The ensembles with constaht It includes both
(EhN) and (ThN) ensembles. EVN) and (TVN) en- and the definition ofCT. Where the integral is over all\8
sembles also belong to this category. In these ensenables coordinates, Bl momenta, and six independent microscopic
andt are allowed to fluctuate but and so7 are kept fixed.  strain components;; .

The formulas for either adiabatic elastic constar@s)(or The specific heaC, in the (HoN) ensemble can be
isothermal elastic constant€{) are>131516 found from
1/ o*H > Vo 3 3Nkg

in=c-{=—=——) ——=A(tijt) =0 2.2 A(K?)==N(kgT)?| 1— . (2.12

ijkl V0<(977ij(?77k| =0 kBT ( 1] k|)77 0 ( ) 2 B 2Ca.
where V, is the volume of the system at reference statelt i in the same form as that of th&(IN) ensemble.
which can be either stressed or stress-fkgethe Boltzmann In the (To'N) ensemble, the specific heat is
constantA(AB)=(AB)—(A)(B), and the(. . .) designates A(H'?) =kgT%C,, (2.13

ensemble averages.
In (ThN) ensemble, Eq2.2) can be derived straightfor- Where

ward from H'=H+Vo Tr(on). (2.14
F=-kgTInZ, (2.3 The thermal expansion tensor for thid ¢N) ensemble
1 becomes
Z=—| e MkeTdr, (2.9 .
C 3 , Qi
A(7;K)==5N(keT)* =, (2.19

and the definition of elastic constants
and for the ToN) ensemble

%) p=0 29 A(7iH') =keTay . (2.16

2
T L[ IF
Vo L amijamg

T,7=0
! Before ending this section, we point out that E(&9)
(2.9, (2.13, and(2.16) do not seem to be available in litera-
tures. An isotropic fornji.e., in the EVN) ensembléof Eq.
(2.8) can be found in Ref. 18.

where( is a constant andr the differential volume element
in 6-N-dimensional phase space.
The specific hea€,, can be found from

AK?) = SN(kgT)?] 1 ke 2.6
in (EhN) ensemble, wher& is the kinetic energy of the !l FORMULATION OF THE (H, o7, 7;,N,i#])

system ENSEMBLE

In (ThN) ensemble, the specific heat is It is easy to show that the uniform dilation corresponds

A(H 2)=kBT2C,7. (2.7  to keep a vanishing shear strain.
. ) Let h=(a,b,9, wherea,b, and c are the three vectors
The thermal expansion tensar=(d7/JT), in (EhN) can  forming the MD cell, then the definition of strain in MD is

be obtained from (see, for instance, Refs. 12 and)13
S
kV_OTA(tnK)+ <;_K> T SNkBTvzoikIC”k' LY 7= 3(hy *Ghg '~ 1), (3.0
° i 7’_ wherehg is the reference value df, G is the metric tensor

In the (ThN) ensemble, the formula is given byG=h'h, and the prime indicates matrix transpose.
If we consider a system with the constraint of the constant

A(tjH)=kgT2D Clyga. (2.9  angld® soh can be written

ki

. . h=gL, with hg=glL,, (3.2
(2) The ensembles with constaator t that include the

(HoN), (TeN), (HtN), and the TtN) ensembles. In these Whereg is a constant matrix antly, L are the diagonal
ensemble$ and so7 are allowed to fluctuate but ort are ~ matrix, Lo =lo dandL;;=1;4; , it is not difficult to show
kept fixed. The corresponding formula for the elastic con-that » is diagonal if and only if one of the following three
stants i$217 conditions is satisfied.
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(1) I1/I01=I2/I02 andc is perpendicular to both andb so 1 x<0,
that one can writg;;=gi3= ;3. It includes the system 0(x)= [ 0 x>0 3.6
with hexagonal or tetragonal or cubic symmetry. '

(2) g is a unit matrix, i.e., a system of tetragonal or orthogo-and dr=dq dp de;;dexdess. The density of states

nal or cubic symmetry. o(H, 0, 7;;) is defined by
(3) 11/1g. =1511g. =131y, i.e., a system of uniform dilation.
1 2 3 o
w:(a—H) :f5(H_(H_E VOUiiEii>)dTl
Note that in general the condition of the constant angle i !
does not lead to a vanishing shear strain, nor even a constant 3.7

shear strain. Therefore to derive the general formulas Wiﬂ\'}vhereé is the Dirac delta function. The normalized prob-
constant angle ensemble will be more practical. However, i%bility densityW(q,p, ;) is '
LA i 1|

does not seem to be a simple issue, since for the constant

angle ensemble in general the six components of strain are O(H—(H—ZiVyoii€i))
not independent. On the other hand, to express explicitly the W(Q.p.€ii) = ® :
general conditions of the constant shear strain in term of ) )
components oh is also not a simple task. Fortunately, the 11€ average value of any quantit{q,p,7;;,0;) is deter-
above three cases with vanishing shear strain contain almotined from(f)=/Wf dr. The entropy is defined by

all the sitqations of interest in the' computer simulation' for S(H, a1, 7)) =Ks In ¢(H, 7y , 7). (3.9

the isobaric ensemble so that to find the general conditions . ) )

for the constant shear strain may not be a necessity. We calye have omitted various constant factors which would ren-

then investigate the simpler constant shear strain ensemble 8" ¢ dimensionless since these constant factors would not

(3.8

in this work instead of the constant angle ensemble. appear in any of our final results. From E§.9), we obtain
From the above arguments, in computer simulation weor the temperature

may work on a constant shear strain ensemble. In such an 9S b

ensemble the independent variables mustrpe&nd 7;; with T= (a_H s (3.10

i#j. It is obvious that Eq(2.10 fails to provide correct im0

elastic constant for those components related to the fluctu
tion of shear strain and so we may need some new fluctu
tion formulas. An interesting thing is that this is an ensembl
“between” constants and constanh so that we can expect IH\ &
to find formulas partly the same as that of the constant <XJ ‘9_Xk> = 55jk' (319
ensemble and partly the same as that of the constam-

semble. Moreover, we can develop two ensembles by choodherex; stands for one of or p variables. _
ing two sets of independent variables, one is the Next we consider the adiabatic theorem for this en-

(H,o5,7;,N,i#]) ensemble and the other the semble. The Hamiltonian is now assumed to be dependent on

(T,ai,m;,N,i#]) ensemble. Sincl will always be fixed ~an additional external parameter, sgy The generalized

andi#j or (and k#!| always required in the following of force associated with this parameterdigl/dy. Calculating
this paper, we shall suppress them. the average value of this generalized force, just as in the

Following the derivation for thédoN ensembld® we ~ Microcanonical ensemblféZ leads to the adiabatic theorem

%he similar arguments as those used in the microcanonical
Z‘e'nsemblé&20 leads to the equipartition theorem

can define thel, o , ;) ensemble by using the phase vol- OH\ 1 [ oH
ume via <W>:ZJW($(H_(H_Z’ VOUiiEii) dr
(H,oy , ~)=j dgdp dej;desrdess, 1/9 JH
¢(H,aii , Het VoS, ey qap CGeqgOezpless __1[¢ =|— (312
' w9y H, o 7 J S,aii

(3.3

whereH is the enthalpy, the integral in E¢3.3) is over all |y, FLUCTUATION IN THE (H,o;;, n;;) ENSEMBLE
3N coordinates, Bl momenta, and three independent diago-

nal microscopic strain components . The thermodynamic law in theH oj; , 7;;) ensemble is
The enthalpyH is defined by

H=E+Vo>, i 7, (3.4) ! #]
' It follows
where E is the energy of the system ang;=(e€;;). The H
phase volume can be written Vo= (‘9_) ,
I aa—ii S
¢(H-Uii17lij):f G(H_(H_VoEi Uiiﬂi))dﬂ (3.9 JH 4.2
. VoUnZ‘(r) :
where the step function Mil's
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We can derive the fluctuation formulas of the adiabatic J 9*H

elastic constants in a similar way as Rayal. did.1%1821
Defining a potential

Xii:f 6“0(7'{_(H_V02 UiiEii))dT, (43)
using Eq.(4.2) we obtain
2
(E)S_J fii(S(H_(H_Z VoUiifii))
X(V0<E“>_V06jj)d7'
=—oVo((€i€j) —(€i)(€;))
:_wVOA(€ii€jj)' (44)

For a system of many degrees of freedom, the apprOX|mat|on

=(€i)d= n;; ¢ is very accurate, hence E@.4) becomes

(;b I
A(eji€j)=— Vo (90“) (4.9
Using Eq.(3.10 we can further reduce the above equation
into
A(Eii"fjj) (Cn”) 1- (46)

To derive the formula for the elastic constants withj and
k#1, we introduce a new function,

Z(H, 04, mj) = J S 19(7-{—(H—V02i g”e“> )dT,
(4.7)
wheres;; is the microscopic stress tensor defined by

IH

VOSIJ:_(?_’I?I]

4.9

We have

2 b o

Il g J Inn

[ siof (1 WS o

" oH ( IH ) g
IMa \Idna) g !
P*H

il
Vol 919

H—(H—VOZi Uiieii))dr

X 60

+v0f SijSk|6(H—(H—VOZi U”E“)>d7

= Vo(Sij (S w.
Again, by usingZ=(S;;)¢ and

4.9

Z. Zhou

o[- -3 o Je{

9*H >
INij I My
(4.10

;9 M

we get

0<S.J>) ¢< PH >
Vo(Sii§
¢( I | o Vo \ d7ijdmi Vo(Si Sy

+ 0Vo(Sij{Sk)

(4.11
or
c 1/ °H Vo i1
().va KaT (4.12

Note that Eq.(4.6) has exactly the same form as Eg.10
and Eq.(4.12 is the same as Ed2.2).

Next we consider the specific heat. Define a new poten-
tial Y by

Y(H,O’ii,m]‘ ,)\):f KH(H_(H_V()EI O'iiEii)>d7',
(4.13

where K=3(p?/2m)=\32(p?/2) is the kinetic energy and
A=m"1 is the reciprocal mass of the particles. Differentia-
tion of Y/\ with respect to\ yields

_f(a(v/x)) :JK(S(H_(H_Z voa”e”>>

2N
X(aH ((?H) )d
N\ an T
S.0ii 17

=A(K?)=(K?)—(K?).
Using Y =(K)¢, we obtain

A2_¢(a(<K>/A)>
w O\

A(SuSkl)

®
S.ajj .7

A(K?)=—

S.7jj .7

_kBT((K> x( AK >)Sm )

Furthermore, by using

(ﬁ(K>) _((9<K>)
A S.ajj .70 N H.oii )
K oH
S
J ST TRAT S,0ii 4755
and the adiabatic theorem
(ﬁH _(&H)_(K)_?»NkBT
N TN N 2n
' Tii o 7ij
0(K>> 3Nkg
—_ = , (4.149
( oH N\ 75 2Co, 7T
we find
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3 3Nkg V. RESULTS FOR THE (T,0;,7;) ENSEMBLE
A(K2)=§N(kBT)2(1—2C—), (4.19

i 1 i To derive the expressions in th&,g; , 7;;) ensemble is
whereC, =(dH/dT),, - is the specific heat. Again, it is Zlelrlrt::)elresilgnpler. The thermodynamic potential in the en-
interesting to note that Eq4.15 has the same form as Eq.

(2.6). The equation ¢(K)/d\)y , ., =0 was used in the
i o i =F— + - .
above derivation and it can be shown as follows. Using the A=E-TS Vozi i i ©.D
definition of ¢, we obtain . .
Note thatA is neither the usual Helmholtz free energy nor

d¢ o) the Gibbs free energy. The thermodynamic law is
Y =- K<K>' (4.1
TR
dA=-S dT+V02 Nii dO'ii_Voz O'ij d’l]l] y (52)
It follows, together with Eqs(3.9)—(3.11), ! 17
IS B 3NKg » follows
Ny 2 (419 1A 1A 62
i »"ij O'ij— Vo (97]” TU“, 77ii_V0 {90_” Tn“. ( )
SO i i
Nk The fundamental connection between thermodynamics
-—— ®n N+ f(H, a5, 7)), (4.18  and statistical mechanics gives
. . . A:_kBTln 0, (5.4
where f(H, o, ;) is an arbitrary function oH,o;;, and
7;j - Since the temperature is defined by @ = %J o (VoS 3 e)/keT 7. 5.5
— IS [t (H, o, 7)) 4.19
| oH ) L dH . ' It is straightforward to derive
Tii i Tii + 7ij
it is independent om and so is foKK). kB_T(CT)iT..le(E“f“), (5.6)
Now we consider the diagonal components of the ther- Vo .
mal expansion tensor. Differentiating; with respect tox PH Vv
ields T o=y — — 0 A¢s.
y (C )I]|(| Vo<‘?7]ij‘97]kl> 0 kBTA(SuSkI)n:O- (57)
o = —J €id| H—|H=VoX o€ | |- Y We find again that Eq5.6) is the same as E¢2.10 and Eq.
S,7ii 7 ' (5.7) is the same as E@2.2). For a uniform dilation system,
JH this result has been reported in Ref. 22.
w L. - .
_(5 )dr= - XA(EHK) (4.20 Similar to Eq.(2.13, the specific heat is
S.oii 7 '
7ij A(H'?)= kBTszn i (5.9
or
where
A(eiK)=—\K T(—ﬁ<6“>> (4.2
! . 19)\ S,o:: 7].].. . H’ :H+V02 O'ii Eii . (59)
i i i
'2I';1is can be further reduced into, following Refs. 10,18 andryg giagonal part of the thermal expansion tensor becomes
3 A(EiiH,):kBTzaii . (51@
@
A(eiK)=— EN(kBT)Z - (422 Finally, in the same reason as for tHe, ¢ , 7;;) ensemble,
Tii i

no fluctuation formula is available for the remaining compo-

It is exactly in the same form as E(.15. nents ofC™ and a.

We find no way to calculate the remaining components
of CS (i.e., the crossover components withj butk+#1 or
i#] butk=I) and @ (the off-diagonal componentsn the /| cONCLUSIONS
new ensembles. This is because they relate to the differential
of the independent variables; or (and 7;;, which do not We derived the correct fluctuation formulas for the con-
fluctuate in this ensemble. However, to find the elastic constant shear strain ensemble which include th#Nl) and
stants in a system of isotropic or cubic or hexagonal or or{TPN) ensembles. Since thédPN) and (TPN) ensembles
thogonal symmetry, it is enough to find the components withare used so frequent in computer simulations, these formulas
i=j,k=Iandi#j, k#I. may be very useful. We found that for a scalar or for those
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guantities that are independent on the shear strain, the flucan expect that Eq94.6) or (5.6) should have the same
tuation formulas in the constant shear strain ensemble are thpgoblem. In contrast, Eq6.2) which comes from Eqg2.2)
same as that of constant ensemble. This is not surprising or (5.7) calculates the elastic constants by probing micro-
since the new ensemble is more like the constanine and  scopic features of the system where fluctuations occur on a
whether the shear strain can or cannot fluctuate has no effeshorter time scale and consequently should converge faster.
on these quantities. We showed that the fluctuation formula$herefore, to find all the elastic constants it is in general
for the elastic constants are a mixture of that of the constannhuch more efficient to first determine the equilibrium lattice
h ensemble and the constantensemble. This is also a natu- constant for the stress of interest using a constant con-
ral result since the new ensemble is just “between” constanstant P simulation, and then do a simulation in the corre-
h and constant- ensembles. We also found that unlike con-sponding constanh ensembl& using formulas obtained
stanth or constantr ensembles, the fluctuation formula for a from Eg. (2.2) or (6.2). However, if we focus on the behav-
tensor in the constant shear strain ensemble is incomplet@ars of shear modulus or specific heat, the constant shear
Such an incompleteness could limit the usage of these foistrain ensemble and so thel®N) and (TPN) ensembles can
mulas. However, if the system has special symmetries espée as efficient as that of the consténéensembles.
cially for an isotropic system, the fluctuation formulas we  So far we do not yet exhaust the possibility of construct-
obtained are enough. Furthermore, our above results are dierg the ensembles of statistical mechanics. At least, to derive
pendent on neither the detail of the Hamiltonian nor thethe general formulas with constant angle ensemble is an in-
equation of motion, so it is valid in both Monte Carlo and trigue topic. Moreover, for instance, we can define an
MD simulations. We should also point out that these new‘uniaxial stress” ensemble by choosing,; and all of #;
formulas work appropriately only for the system with or- exceptz,; as independent variables. But such an ensemble
thogonal or hexagonal or tetragonal or cubic symmetry.  does not seem to be useful that it is out of any interest.
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