Propagation of an intense Gaussian laser pulse in air*
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A numerical solution of the nonlinear macroscopic laser-fluid equations for propagation of a
Gaussian laser pulse in air is described. The concept of “utility analysis” of numerical differencing
schemes is introduced. With the computation scheme used, the laser pulse could be followed for
only 1077 sec; so enormous energy was put into the pulse to enhance the interaction with the fluid.
Thus the initial pulse distortion could be observed. Analytical evaluation of the computer results
produces a detailed quantitative check and suggests that a combination of analytic and numerical
methods would allow a pulse to be conveniently followed for much longer periods of time. The
preceding paper by the same authors describes various types of instabilities to be anticipated for

propagation over long periods of time or with large powers.

l. INTRODUCTION

The work described in this paper was motivated by the
discovery of instabilities in the system of equations de-
scribing electromagnetic wave propagation and fluid dy-
namics. These instabilities are described in the preced-
ing paper.! A numerical solution of the full set of mac-
roscopic laser-fluid equations (without saturation ef-
fects) is presented for a Gaussian laser pulse of enor-
mous energy. The computation scheme employed was
not optimal and the pulse could be followed for only

10~% sec. Consequently, enormous energy was put into
the pulse to enhance the laser-fluid interaction and drive
the onset of strong distortions and instabilities.

Other computer solutions of the laser-fluid equations
have recently been given® by various groups for physi-
cally reasonable powers. Such calculations have typical-
ly dealt with steady-state beams without saturation ef-
fects, but have included the effects of gravity, More re-
cently saturation effects have been added and pulse
shape is being considered.

In the course of these studies it became apparent that
there was some merit to introducing a new concept to
judge the value of an algorithm for computing the solu-
tions of a system of partial differential equations. This
concept was called “utility”, and will be discussed only
briefly in Sec. II. The full details will be published
elsewhere. * The advantage of this concept is that it is
relatively easy to apply to complicated systems of par-
tial differential equations, whereas the stability concept
leads to a very complicated procedure for deciding on
the value of a numerical routine.

Speed and memory size in a computer place certain re-
strictions on one’s ability to investigate phenomena in
the laser-beam problem. In the attempt to calculate dis-
tortions of the type predicted by the linearized instabili-
ty analysis, cylindrical symmetry was imposed on the
problem in order to facilitate the computer calculation.
Had this not been necessary, or had some other inde-
pendent variable been eliminated rather than the angle
about the beam axis, much more pronounced evidence of
beam and fluid instabilities would likely have been ob-
served for substantially lower powers, powers that may
be achievable. Arguments supporting this proposition
are contained in the preceding paper.!
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In Secs. III and V we present the results of a calculation
of beam distortion for a very high intensity pulse prop-
agating through air for several kilomters. Analytical
agruments are advanced in Sec. IV which suggest that
the qualitative features of the distortions are correct,
which lends credence to the computer output, Then,
using the computer results as a check, the analytical
procedure is shown to be adequate for detailed quantita-
tive calculations. By combining the analytical procedure
developed with appropriate computer support, the pulse
could be followed much longer than the 10°° sec de-
scribed here.

Il. DESCRIPTION OF THE PROCEDURE

The laser-fluid equations were solved in the near-field
region of a laser pulse, initially Gaussian in both » and
z, propagating through air at 1 atm of pressure and at
10 °C. A cylindrical geometry was used and cylindrical
symmetry (no dependence on the angle ¢) was presérved
at the price of dropping the gravity term in the Navier-
Stokes equation. Having cylindrical symmetry amounts
to a considerable simplification in the problem, so that
the inclusion of the free convection effects due to gravi-
ty was not attempted in this analysis. The problem de-
scribed above amounts to a mixed initial-boundary prob-
lem. The initial configurations of the laser beam and the
fluid are specified subject to certain boundary conditions
at »=0 which must be satisfied at all times. Further-
more, the boundary condition at z=0 is time dependent,
because the tail of the Gaussian must be fed into the
spatial region. For the numerical solution, a spatial
mesh of grid points or stations is used to represent the
vz plane. At a given instant in time, the values of the
various dependent variables are obtained at all of the
stations. The difference equations are then employed
with these values of the dependent variables to advance
a step in time. This procedure is repeated over and
over until the desired time interval has been traversed.
An explicit difference scheme was used in this calcula-
tion, because such schemes are simplest to handle.

The two major difficulties in using numerical techniques
to solve differential equations by computer are error
growth and excessive computation time. In order to con-
trol the error growth, the utility criterion mentioned in
Sec. I has been used. Furthermore, highly accurate
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FIG. 1. On-axis magnitude of the electric
field | E| is shown as a function of |z —z,|
at four different times. As shown in Eq,
(16), z, =~ ct locates the “center” of the
pulse. The solid curves show the leading
edge of the pulse and the dotted curves de-
pict the trailing edge. Distances along the
z axis are expressed in units of the grid
size: 4z2=0,45 km. The quantity | E| shown
is defined in Eq, (13), so that the exponen-
tial damping factor is not included in the
graphs.
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seven-point difference quotient representations of the
differential operators were employed to reduce trunca-
tion error. In order to handle the economic problem of
large computation time, a certain amount of efficiency
is introduced by minimizing the amount of core storage
required of the computer. This was accomplished in
part by using overlaying techniques to store several
pieces of information at the same site in the computer.
Thus information is stored only as long as it is needed
and then is replaced with current material. The com-
putation time was also minimized by making use of a
nonuniform grid. The seven-point difference relations
allowed a relatively large grid size without undue trun-
cation error and the nonuniform grid spacing permitted a
greater grid density in the region of special interest.
Thus an accurate solution could be obtained with a min-
imum of computation.

_ The laser-fluid equations are given in Eqs. (1)—(9) of
Ref. 1. As mentioned above, the gravity term was
dropped. Also, the thermal conductivity x was taken to
be constant because its derivatives are very small. The
equation of state was taken to be the ideal gas law., The
numerical values used for the various parameters are
the same as those given for the linearized analysis in
Ref, 1, because the same temperature and pressure
were used for the undisturbed medium. The laser fre-
quency w, and the dimensionless absorption constant «,
were chosen to be 1, 773 x10' sec™ and 10, respec~
tively. The wave equation for linearly polarized light in
an absorptive medium is reduced to the scalar equation

2
c2V2E=%(eE)+ ac%(wf?E). (1)

This equation is an approximate equation describing an
electric field which is polarized linearly. Strictly
speaking, of course, Maxwell’s equations do not allow
cylindrically symmetric linearly polarized beams in
charge-free space.

The solution of (1) is taken to be in the form
E=3%(E,+iE,)expilw, t -~k 2)exp(~-zaz)+c.c. , (2)
where E, and E, are slowly varying functions of r and ¢

and the laser frequency and wave number are related by
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€oew2 =C?ky (3)

where ¢,, is defined in Eq. (11) of Ref, 1. Equation (2)
was substituted into (1) and the second derivatives of E,
and E, with respect to time were dropped. From the
real and imaginary parts of the resulting equation, cou-
pled simultaneous differential equations for E, and E,
were obtained. These equations are also coupled to the
differential equations for p, T, and the cylindrical com-
ponents v, and v, of the fluid velocity. The use of cylin-
drical symmetry allows the simplification v,=0.

The easiest way to obtain a variable grid size is to in-
troduce a transformation to a new indpendent variable,
Thus, in order to have more grid points in the region of
special interest, small v, the nonlinear transformation

r/n=x/0 -x) 4)

was employed. The scale value %, was chosen according
to the dictates of convenience and will be shown in Eq.

©@).

Because of the symmetry of the problem and the regu-
larity of the differential equations, the following bound-
ary conditions must be satisfied at x=0:

3B, 3B, 3T _dp_0dv,_dv, 2, . _g
ax dx ox odx dx o9z 9z® T

%v, _, dv,
Rk ®)

The laser-fluid differential equations must, of course,
be converted to difference equations before a computer
solution can be attempted. As indicated earlier, seven-
point difference quotients were used to represent the
differential operators, but these difference quotients
will not be presented. (The scheme was a straightfor-
ward explicit difference representation. )

Once the difference equations have been written, it is
vital to have some criterion to determine useful time
step sizes and corresponding grid spacings. It is not,
however, necessary to demand that the difference
scheme be stable in the classical sense. In fact, the
classical notion of stability is irrevelant to computer
solution of differential equations, particularly for non-

Downloaded 14 Sep 2009 to 163.13.32.114. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



3649
7000
6000 | -5
t=10 “sec
4
1=8x10"% sec
5000 | .
t=6x10 ~sec
t=0
4000 +
X
E.’I”E
[ o
— 3000 |
u
r=0
2000 |
I )
10 20 30 40! 50
42.5.
Z (AZ=0.45km) —
AZ

FIG. 2. For detailed comparison, the z profile of the on-axis
electric field | E| is shown at several times. The unit Az is
used for distances along the z axis. The curves have been dis-
placed to the left and the leading edges made to coincide at
height 1000 (erg/cm®/2 for | El. The abscissa for this inter-
section of the curves has been labeled 42. 5, the location of
this point at ¢t=0.

linear systems. This argument is presented in detail in
another paper® and another kind of criterion, “utility”,
is proposed. A difference scheme is “useful” for pre-
scribed ¢ and N if the computer solution of the scheme
produces results for N time steps which differ in mag-
nitude from the correct solution of the original differen-
tial equations by an amount less than ¢. Thus, utility
analysis is totally different in philosophy than stability
and, incidentally, is far easier to apply. A number of
theorems have been developed which allow rapid and

powerful assessment of the utility regions of differencing

schemes of all types. Because these matters would only
extend the length of the present paper and because it is
believed that utility procedures will be worthwhile in a
broader context than the problem at hand, a separate
paper is devoted to the subject and only a brief sketch of
the analysis will be given here.

It turns out that a utility region for an explicit differ-
encing scheme can be determined from a relation of the
form

At<[(4B)F N, (6)

where At is the time step size, N is the number of time
steps to be made, €~10~°, and § is a function of the spa-
tial mesh sizes and is determined from the differencing
scheme. For the seven-point explicit difference scheme
used to represent the laser-fluid system, § is trivially
determined to be®

5~c[8/k, (paxyP +2/Az], ("M

so that the utility restriction predicted is
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1/cAt>12/k, (Ax )P +8/Az, ®8)

Since § is given only approximately by (7), the laser
power I does not appear. The differencing scheme em-
ployed was not optimal and its utility region is entirely
dominated by the electric field development and is in-
sensitive to the fluid parameters. This was, however,
the scheme employed in the present solution.

Condition (8) is such a strong constraint that one imme-
diately wonders if it is really necessary to obey it. Part
of the utility philosophy is to obtain a constraint like (8)
and try it on the computer. Then one can try to violate
the condition, using a larger Af, and compare the re-
sults. This was done for the problem discussed in this
paper and no escape from (8) was possible for the dif-
ference scheme used. In fact, if the criterion was vio-
lated by a factor of order 5 in A¢{, then classic instabil-
ity phenomena were observed in the computer output.
Thus, by a stroke of bad luck, it appears that (8) must
be obeyed.

In order to emphasize the implications of (8) for the
study of the propagation of laser pulses, a description
of the accessible parameter regime will now be given,

1=10° sec
Z2=353
-
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FIG. 3. Radial profile of | E| is shown for {=0 and for ¢=10"%
sec for slices taken through the on-axis maximum 2, in the z
profile.
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I =3.3x10" erg/(cm®sec),
P, =5.2x10* erg/sec,
t=8x10"% sec U=9.8%x10' erg,

and the air was taken to be initially in its unperturbed
state at 1 atm pressure and at 10°C. The reason for
these astronomical powers will be explained later,

The spatial grid was composed of 80X16=1280 mesh

points. The z axis was evenly divided into 80 steps of
P size Az=0,45%10° cm =0. 45 km beginning at z=0 and
extending to z=35.6%x10° cm=235.6 km. Thus the peak
of E, was initially located at the 30th mesh point on the
z axis and its 1/e width extended from the 20th to the
40th mesh point. The radial variable x has the range
0<x <1 and this range was evenly divided into 22 steps
of size Ax =355, but only the 16 sites closest to the z
O Ol 02 03 04 05 06 07 08 axis were used. The more distant sites correspond to

radial distances greater than five beam half-widths. The
' first step away from the z axis corresponds to the radi-
T (ry = 200 cm) —— al distance Ay =200 cm/21=9. 5 cm ~ X (radial half-
. . . . width). The time step size was taken to be A¢=10" sec
FIG, 4. Details of the radial profile are shown for various and 100 steps were made so that the time interval 0 < ¢

times. In all four cases the radial slice through the on-axis
maximum of the z profile is exhibited,

<10°% sec was traversed.

Taking these grid sizes and time steps and subtituting
into the utility condition (8), one gets

As a starting point for this discussion, the parameter
values used in the actual calculation will be listed. The
electric field at 1=0 was taken to be of the form

E, = Fexp[-4(r/r,F] exp{-4[(z - 2,,)/2,['},
E,=0, ©)
where
ro=full (1/e) width of E, (r,z2=2z,, t=0)
= /g(full (1/¢) width of [, at z=z2,,, ¢t=0];
I, =[on-axis intensity (in erg/cm®sec) at r=0,z=2,,
t=0, time averaged over several optical periods]

= %(603)1 I2cF* 4

N
2,=1full (1/e) width of E,(r=0,z, ¢=0). —

2
2,,=location of the peak at ¢t=0; ", °

w

2, _ 16R 64 U (10)

F= O N RN

= peak value of the electric field, squared;
B, =total power (in erg/sec) of the pulse at 2 =24,

t=0, time averaged over several optical peri-
ods;

U=total energy in the pulse at =0, time averaged
over several optical periods.

The values taken for these quantities were
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FIG. 5. An off-axis maximum in the radial profile is shown

% =200 cm, at t=10~% sec. The slice shown exhibits the radial profile at
=9x10° em=9 km 2=31, whereas the principal peak of the pulse is on axis at

Zo ’ z=35,3, The slice at z=31 contains the greatest off-axis effect
Z,0= 13.5%x10° cm =13 km , and, therefore, locates the two secondary peaks which have

developed in the pulse. These secondary peaks are also indi-

F=4.7x10° (erg/cm3)}/? | (11) cated on Fig. 9.

J. Appl. Phys., Vol. 44, No. 8, August 1973

Downloaded 14 Sep 2009 to 163.13.32.114. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



3651 Reichert, Wagner, and Chen: Propagation of intense Gaussian laser pulse 3651

1000

100

10 te6x10°® sec
r=0

1 | { 1 | L |
(o] 10 20 30 40 50 60

Z
Vv (AZ=0.45km)

FIG. 6. Phase information is presented by showing | Ey| ag a
function of z at t=6x10" sec. For comparison, the dashed
curve shows | E|, Equations (2) and (13) of the text define | Ey|
and | E|.

1 _1 1 1
cAt~ 3000=40800 5630
=12/p, B (MxP +8/Az, (12)

Thus, for the chosen step size Az, the value used for
At would violate the condition, were it to be doubled. Of
course, the condition (8) is only approximate, but, as
mentioned above, good solutions could not be obtained
for A¢~107° for Az=0, 45 km,. Clearly the value # used
for Ax does not saturate the Ax piece of (12) and one
could probably use Ax as small as . Such a small step
size for Ax would, however, require three times as
many spatial mesh points and would exceed the storage
capacity of the computer which was used.

The desire is to use as large a value of Af as one can,
In this regard, the Ax piece of (12) is generous and
would permit Af~10"%, The z step size would have to be
increased to Az~5 km to allow this, however. Such a
large step size would be larger than the 4. 5 km half-
width of the pulse selected, so that no details of defor-
mation of the pulse could be observed,

If the beam is made narrower in radial extent, the
Fresnel length decreases and diffraction effects become

important. The Fregnel length is 310 km for », =200 cm,

so that one would become involved with far-field effects
if the beam radius were decreased by more than a factor
of 5. Making the pulse longer in the z direction expands
the time scale over which interesting effects may be
studied. If, on the other hand, the pulse is shortened in

J. Appl. Phys., Vol. 44, No. 8, August 1973

the z direction, then one must shift to smaller values of
Az in order to be able to follow details of the develop-
ment of the pulse. Shifting to smaller Az requires, be-
cause of (12), that one use smaller values of Af, The
net effect is that no profit is derived from using shorter
pulses, because they can be followed only for corre-
spondingly shorter times.

One aspect of the parameter regime has not yet been
discussed: the range of power for the beam. Since the
power I does not appear in the utility criterion, its role
must be determined by experimentation with the comput-
er program. Very small powers are not interesting be-
cause there is very little interaction with the fluid. In
order to see instabilities and nonlinear effects during
short times, one would wish to consider beams with
large power densities, The extremely large values
shown in (11) produce interesting effects, in a time in-
terval of 10™° sec. Such beams cannot be followed for
more than about 100 time steps, however, because the
various dependent variables begin to develop large cur-
vatures and vary on a scale smaller than the mesh sizes.
Thus if one wishes to follow the development for a long
period of time, the mesh sizes must be decreased and
eventually the time step will have to be smaller, and
then many more time steps will be required. In this re-
gard, one must keep in mind that if the mesh size is de-
creased, while the initial pulse size is not decreased,
then more mesh points will be required and the storage
capacity of the computer also becomes a limiting factor.

_ VameN
_ / “\
- el
’
- /
/
/ +
1000 | — _
lE)}
100 gl
N
ﬂE ~
[
ge L
S
T
10— 1=8x10"% sac
— r=0
1 | | 1 1 1 |
o 10 20 30 40 50 60

Z -
A—Z'(AZ- 0.45¢cm)

FIG. 7, At t=8x10" sec, |E;| and | E| are shown on axis as
functions of z. Two nodes have developed and E, is negative in
the region of the power peak. The sign of E; in the various re-
gions is indicated on the figure. The nodes are also shown in
Fig,. 9.
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FIG, 8. At t=10"° sec, | E;| and | E| are shown on axis as
functions of z. The sign of E; is indicated in the various re-
gions., There are now four nodes. The nodal curves are phase
fronts and are shown in detail in Fig. 9.

The final remaining option is to increase the power in
the beam even more. The net effect is that the large
curvatures develop faster and the development can be
followed only for shorter periods of time.

One final remark about numerical solution of the laser-
fluid equations will be made before discussing the re~
sults of the computer calculation. Strong growth, insta-

051
Peak of Z-profile of IEI
at t=0
04 - /
03—

o
~
I

Zero of Ej ot t=10"sec

Secondary peaks

e
T

Principol' peak

bilities, and nonlinear effects, can often not be followed
because of the mesh sizes employed. If these strong
oscillations or secular growths are generated by tiny
rapidly changing terms, that is, if the instabilities arise
due to ripple effects which become strongly enhanced,
then a crude mesh size can smooth these effects out and,
thereby, prohibit the occurrence of the strongly growing
phenomena by removing their source, Very strong in-
stabilities were found in Ref. 1 for the linearized laser-
fluid equations. The strongest of these instabilities are
generated by very short wavelength ripple, The mesh
size employed in the present calculation will begin to
wash out ripple about an order of magnitude larger in
wavelength than the ripple which is most strongly ampli-
fied in the linearized analysis. Thus, one must bear in
mind that some physical sources of pulse distortion will
be excised by the mesh selected.

Accepting the many restrictions noted above, we have
examined the propagation of a 200-cm by 9-km pulse
with 10'7 erg for 1075 sec. The pulse moves 3 km during
this time and it is possible to observe the onset of the
laser-fluid interaction in some detail.

ill. RESULTS OF THE COMPUTATION FOR
THE ELECTRIC FIELD

The results of the calculation are presented in Figs.
1-17. The electric field is conveniently considered in
terms of the quantity

|E| = (B2 + B2} 12, (13)
where E, and E, are the slowly varying electric ampli-

tudes defined in (2). The instantaneous electric field is
thus given by

E=|E|cos(wyt=kyz+5g), (14)
where the phase §; is given by
oy =tan'(E,/E,).

As shown in (9), at t=0, E, is taken to be zero and,
consequently, & is zero initially. Thus

Peak of Z-profite of |E |
at 1=10° sec

FIG. 9. Various properties of the pulse

l of [E] ot — of [E] at are shown in the »z plane, The location of
T t=10® sec PN 1=10"° sec the peak in the z profile is shown as a
S o © A function of 7 at ¢=0 and at t=10"° sec. The
< o phase fronts with E; =0 are shown at ¢=
"o Ol t=10"° sec. The open circles locate the z-
<. profile nodes of E; at ¢ =8x10- sec. The
- 0zl small squares locate the secondary max-
l ima of the pulse at #=10% sec.

03}

04

05

| | i
22 25 30 35 40

Z -
A7 (AZ=0.45km) ——
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FIG. 10. On-axis temperature increment T -~ T is shown as a
function of z at =10 sec.

|E|=E, att=0, (15)

and E, is described by Eqs. (9)—(11) initially. This ini-
tial pulse shape in exhibited in Figs. 1(a) and 3.

In Fig. 1 the z profile of the pulse is shown at the initial
time, at 10°° sec, and at two intermediate times, For
t+0, the pulses are not absolutely symmetric about
their peaks. In order to exhibit this asymmetry, the
curves are plotted as. a function of |z ~z,|, where z_is
the center of the pulse. This device allows direct com-
parison of the leading and trailing edges of the pulses.
The center z, is defined to be the point equidistant from
the leading and trailing edges at | El =1 (erg/cm?®)!/2,
These values are (¢ in sec)

t=0 t=6x10"¢

t=8x10"% ¢=10"°

(16)
z2,=30 z,=34 z,#35.3 2,=36.6,

where for convenience, distances along the z axis will
be given in units of grid size: Az=0,.45x%105 cm=0. 45
km. One notes, therefore, from (16) that this pulse cen-
ter propagates at the velocity v,~2.97X10'° cm/sec, the
velocity of light. The pulse peaks, however, are ob-
served to drift backward with respect to z, (¢ in sec):

t=0 t=6x10"° t=8x10"® ¢=10"°

17)

z,=30 2,~34 2,#35.2 2,%35.3,
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so that after 107° sec, the peak has lost about 2 km with
respect to z,. Note that the exponential damping factor
shown in (2) is not included in the quantity | E| appearing
in the graphs. For air, this factor is larger than 0. 95,
even at =10° sec. Other than this effect, very little
energy is lost from the beam due to heating of the fluid,
so the distortion effects shown in Fig. 1 are rather
minor and are noticeable only near the peak of the pulse.
Extra detail of this peak distortion is shown in Fig. 2.
For purposes of this display, the leading edges have
been placed together so that the curves intersect at | E|
=10° (erg/em®)!/2 and the corresponding abscissa has
been labeled 42. 5, the location of this point at /=0. The
retrograde peak motion and the corresponding loss of
fore and aft symmetry in the vicinity of the peak are
plainly seen.

The radial beam profile is exhibited in Figs. 3 and 4.

The radial slice shown at each value of the time is taken °
through the position of the maximum z, in the z profile.

In Figs. 3 the entire beam profile is shown for the ini-
tial and final times only. Comparison of the curves re-
veals a small on-axis increase extending out to the

beam half-width (half of the full 1/e width) at 3»%,=100
cm. The effect amounts to a 47% increase in the on-axis
intensity. Details and intermediate states are given in
Fig. 4.

Although it may appear from Figs. 1—4 that the energy
in the pulse is not conserved properly and that the beam
is gaining energy, such is not the case. The total energy
in the pulse is in fact constant to within 5% throughout

1000

ITIIIII

100

TT| IIIII—

(T= Ty ) (°K)
T

T IIIIIII

i ) U 1
O 02 04 06 08 10 12

r =
—ro— (ro- 200cm) —

FIG. 11, Radial profile of the temperature increment is shown
at £=10"% gec for the slice through the maximum of the z pro-
file. This maximum is at z=33 as may be seen in Fig. 10,
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FIG. 12. z component v, of the fluid velocity is shown on axis
as a function of z at £=10"% sec. A double log plot is used which
omits values of v, between 10-% and —10~% cm/sec.

the computer calculation. The shape of the pulse is
merely becoming slightly more complicated. Although
the radial peak is on axis in the slice through the peak
in the z profile, this is not the case for slices taken be-
hind z,. For example, at {= 10-° sec, the principal peak
is at 2,=35.3. As one moves away from this peak to-
ward the trailing edge, the radial peak moves off axis
giving a maximal effect near 2=31. The principal peak
of the pulse is, however, always on axis. The radial
profile at z=31 is shown in Fig. 5. This is clearly only
a small detail at £=10"° sec. The position of this off-
axis secondary peak is also located in Fig. 9 and
marked with tiny squares.

In order to follow the development of the phase of the
electric field, the quantity | E,| is plotted in Figs. 6—8,
for ¢#0. Of course, at t=0, |E,|=|E| and the phase 6,
is zero, In these three figures the graph of | E| is
marked with dotted lines for comparison. The corre-
sponding value of | E,| can be deduced from these fig-
ures, using (13). These figures show far more dramatic
effects than the curves discussed above. At t=6x10°
sec, the phase is still nearly zero and FE, is positive
everywhere. At 1=8X10"° sec, however, E, has changed
sign over a 3-km region extending from slightly in front
of the peak of | E| toward the trailing edge of the beam,
This is clear-cut evidence of the onset of laser-fluid
interaction in the trailing edge of the beam. It is clear
that the front of the pulse and the distant tail are, as
yet, unaffected by this interaction. It is interesting that
the unperturbed part of the leading edge does not reach
as far back as the principal peak. Thus, the peak al-
ready feels the effects of the interaction to some degree
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and comparison of (16) and (17) reveals that the peak
will now begin to lose ground with respect to the center
of the pulse. This effect has already been noted in the
graphs of | E|,

Since there are now places where | E,| is zero, it is
clear that the phase goes to 37 at these sites. The am-
plitude E, responds strongly at those places where E,
=0, fulfilling the obligation to conserve power. One
notes that the graph of | E| remains very smooth, giving
no indication that the phase is varying rapidly. Figure 8
shows the later development of the region in which E,
changed sign. The region in which E, <0 is now 7 km
long, nearly as large as the 1/e width of | E|. This re-
gion has advanced now to a point well in advance of the
principal peak and extends back far into the tail. It ap-
pears that this node is propagating forward at nearly
four times the speed of light. Furthermore, there has
been another sign reversal of E, slightly behind the
peak, It is this kind of oscillatory behavior in E,, with
large variations on the scale of the chosen mesh size,
that brings a halt to further observation of the beam de-~
velopment by this method.

On the rz plane shown in Fig. 9, the constant phase
curve E, =0 is shown in detail at 1=10"% sec. Also
marked, with small open circles, is the on-axis extent
of the similar curve at 1=8X10"° sec, encountered in
Fig. 7. Also indicated on the same figure is the locus of
maxima in the z profile of the pulse for off-axis slices,
both at /=0 and t=10"° sec. At ¢{=0, the pulse is de-
scribed by (9) and clearly the off-axis slices all have
maxima in z positioned at z,,=30, As the pulse propa-

-
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FIG. 13. Radial component v, of the fluid velocity is shown as
a function of » at t=10-% sec, The slice is taken at z=32, the

location of the “center of velocity” shown in Fig. 12,
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FIG. 14. On-axis fluid density decrement, —(p —py, is shown
as a function of z at =10 gec.

gates, however, the peak moves slower than the velocity
of light, as previously noted. The off-axis portions of
the pulse, however, have much smaller intensity and,
consequently, interact very little with the fluid. These
portions of the pulse will suffer no delay, and move
steadily ahead of the principal peak. One notes that at
two-~thirds of the radial half-width of the beam, the de-
lay has disappeared almost completely. As mentioned
above, the small squares locate the secondary peaks
present at t=10"° sec.

IV. ANALYTICAL PROCEDURE DEVELOPED
TO EVALUATE AND EXTEND THE CALCULATION

The phase-front information presented in Figs. 69 is
an interesting feature of the results of the computer so-
lution, Since | E,| turns out to be a rapidly varying func-
tion of time, it is of interest to attempt to understand
the mechanism responsible for the behavior of E;., In
order to understand this behavior, one must realize that
the phase depends on the state of the fluid. The state of
the fluid given by the computer calculation is shown in
Figs. 10—~16. Before these figures are discussed, how-
ever, it is convenient to examine certain analytic esti-
mates for the fluid variables. Such estimates will allow
insight into the behavior of E, and, later, will facilitate
the discussion of the computer results for the fluid
variables.

In order to describe the behavior of E,, it is useful to
write the electric field in the form
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E=8&r,z ~ct)explilw,t - Vew, /c)z]} +c.c., (18)
where

8,=3F expl - 4(r /v, exp{- 4[(z - c1) /2, F (19)
and

Ve =1+[(e=1)/2p,] p1 (20)

where F is a slowly varying amplitude, p,=p—-p, is the
local density excess, and for the present considerations
2,, has been put equal to zero. Combining Eqs. (18)—
(20), the electric field can be put in the form shown in
(2) with

b= peos(r 522 )] x4 =Y o] -4 5],

(1)

Ey= [- Fsin ( ky2 %;;lpl)] exp[- 4(%)2] exp[— 4(‘2—;001)2] .

These expressions agree with (9) at =0 and offer a way
estimate the behavior of E, at subsequent times. On the
basis of (21) the nodes of E, might be expected to be de-
termined by

cos{k, [ (e, =1)/2p,1 p,}=0. (22)

Actually, this expression should be modified slightly if
one wishes to attempt to get quantitative agreement with
the computer solution. It is clear that (21) requires E,
to vanish at z=0 at all times. This is not the same
boundary condition which was used in the computer solu-
tion, Actually one should use

E,~cosy

with

YR AN S R A | W T

-9

-10 %(r°=20<)cm)——>
[]

FIG. 15, Radial density distribution is exhibited as a function
of r at £=10"% sec. The slice is taken at 2=32, the location of
the density minimum detailed in Fig, 14. A double lo% plot is
used which omits values between 10-° and ~ 10-° g/cm®,
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FIG. 16. On a double log plot, the various laser and fluid vari-
ables are simultaneously plotted versus z at t=10-% sec so that
the spatial location of the various pulses can be visualized.

b=tk [Zo {llo—1)/2po) pi}sv, o d2” - (23)

The integrand in (23) should be evaluated at 2z’ and #,
where

c(t =t)=2z2" -2,

It is clear from (21) and (23) that the mechanism re-
sponsible for the behavior of E, is easily exhibited. To
actually follow the behavior of E,, however, it is clearly
necessary to determine the state of the fluid. In particu-
lar, the density excess p, must be obtained as a function
of time and position. In order to analytically describe
the fluid for the time interval and parameter ranges of
the computer solution, the laser-fluid equations may be
simplified to

0T, y-13p, , ac
__Lz__1+_
Po3z “B at ' G, (24)
and
82p1~ 2 2
T R Bp, VT, , (25)

where 7] is the local temperature excess, T - 7;. One
must recall that the intensity, cE?, appearing in (24) is
a function of time and position. Integrating (24) from
zero to ¢ and combining the resulting equation with (25)
to eliminate 7;, one can obtain
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% omct 2o/l 2g
It is straightforward to integrate this expression and,

although the details will not be given here, it is clear
that p, will have the form

p,=[<872?—1>exp<—%>]F(z,t), (27)

so that p <p, on axis and there is an off-axis maximum
in the density. In other words, there will be a pile up of
the fluid at a distance » 37, from the axis.

The temperature distribution can easily be obtained by
integrating (24) from zero to

I 7\ [t v \2\dv
T, ~20%L oy (— 8—>f ex [—8(—>]— . (28)
! cpocu p 712) z=ct p ZO ZO

‘ A negligible term involving p, can be evaluated using

(27) and has been dropped to obtain (28).

Combining (27) with (23) the behavior of E, can be visu~
alized and studied analytically. Closed contours such as
those shown in Fig. 9 are predicted and other qualitative
features are correct. A detailed comparison of this an-
alytical procedure and the computer result is in pro-
gress and it is now clear that striking quantitative
agreement is obtained. This success is of great interest
because the analytic procedure, unlike the present com-
puter solution, is not limited to 107° sec. For the pres-
ent, however, only the computer solution is presented.

V. RESULTS OF THE COMPUTATION FOR
THE STATE OF THE FLUID

Analysis of the computer result for the state of the fluid
at t=10"° sec will now be considered. For this discus-

Power Peak ; : Power Peak
at t=0 \ [/ at t=10 %sec
|
| |
| |
[N BV — —(0- i i
X 1 (0-pP,) width at hatf maximum
Il |
' |
P—I‘—O—-k V; peak to valley width
|
: 1
- | .
t=10° F—t—e—7—  (T-T,) width at half maximum
1
= |
r=0 : )
—— I, width at half maximum
| I
i i
’—:—+—-——| | E| width at half maximum
i I
! [
L | I { P | 1 I |
o] o] 20 30 40 50 60 70

Z
2z (AZ=0.45km)——

FIG. 17. Location and full 1/e widths of the various laser and
fluid pulses are shown vs z. The peak-to-valley distance is
shown for »,. The initial and final locations of the laser power
peak are also indicated.
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sion, it is useful to keep several characteristic dis-
tances in mind. Since the state of the fluid is governed
by the intensity profile

I,tryz,0)=3(e,) %c| E|?, (29)

rather than by |E| directly, the following initial param-
eters are relevant: The full 1/e width of the z profile of
the intensity is

2,//3 =14.1 in units of Az=0.45 km, (30)

At z=2z,+32,=2,%5,

2
Lo (31)
oz

so that 9I; /3z has extrema separated by 10 units. The
full 1 width of the radial intensity profile is

7oA = 0. 7077, =141 cm. (32)

At y=1r,=50 cm,

9%l

so that I, /3r has a maximum. The maxima on opposite
sides of the axis (diameter of the density doughnut) are
separated by 100 cm.

The local temperature excess T — T,, where 7,=10°C,
is shown in Fig. 10 as a function of z at +=10"° sec,
This curve is in complete quantitative agreement with
the analytical result shown in (28). The hottest place in
the beam lies on the axis at 2~33, 3. Since the intensity
peak is at z,=35, 3, it is clear that the thermal peak is
lagging behind the intensity peak. Since z,~36.6 at this
time, it is clear that the thermal peak is almost exactly
midway between the initial and final pulse centers. Thus
one finds, as expected, that the thermal peak propagates
at velocity 3c for small times. This and other proper-
ties of the thermal profile are readily understood on the
basis of the following considerations. The temperature
responds to the heat deposited in the medium, so that

from (28),
(—0—‘— IL(r,z',t=0)‘1:—,> . (34)

z
T(Z)"TO'T'/\ pc

rz-(z’-z,o) 0~y

Due to the symmetry of I, and the fact that it is
Gaussian, it follows from (34) that T(z) should reach a
maximum midway between z,, and z, for small times,
Furthermore, the graph of 7(z)~ 7, should be symmet-
ric about its maximum. Both of these features are evi-
dent in Fig. 10. Since the peak moves much less than
its half-width in 10°° sec, the integrand in (34) is essen-
tially constant. Evaluating I, (r, 2’, ¢) at the midpoint of
the interval, one obtains

T(2) - T, =[(2, = 2,0)/cla/p,C M (7, 2 - 3(2, = 2,5), t=0).
(35)

From (35) one concludes that the width of the thermal
distribution should equal the width of the intensity dis-
tribution. Indeed, one sees in Fig. 10 that the tempera-
ture distribution has a width 14. 1, which is to be com-
pared with (30).
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The corresponding radial temperature distribution at
z2=233, the position of the maximum at =10 sec, is
given in Fig. 11, This curve, also, is in complete quan-
titative agreement with the analytical result shown in
(28). The temperature has reached a maximum of more
than 1000 °K on axis and the full width of the distribution
is found to be 0. 67r,=134 cm, 5% narrower than the
initial radial intensity width. One might have expected
the temperature distribution to be broader than the in-
tensity profile because the large radial velocity of the
fluid should carry some of the deposited energy away.
In fact, this effect may possibly be observed in the fol-
lowing way. One might compare the temperature distri-
bution not to the original Gaussian intensity profile, but
rather to the 1/e width of the radial intensity profile at
t=10"% sec. This final intensity profile has a width of
128 cm or 5% less than the temperature width, The
average of the two intensity widths is 134.5 em, almost
exactly the observed temperature width, This average
may be the best measure, becuase the thermal peak is
midway between the initial and final intensity peaks.

The z component v, of the fluid velocity is shown in Fig.
12 as a function of z. A double log plot is used which
omits values of v, between 107 and =107 ¢m/sec. This
kind of plot allows negative values of v, to be plotted
below the “axis”. The zero of the velocity distribution
occurs around z=232.2, so the “center of velocity” lags
slightly behind the thermal maximum. From the differ-
ential equation for v,, one might expect to find

o~
9z 9z @ (36)

so that the peaks in Fig. 12 would be separated by 10
units according to (31). Indeed, the peaks are found to
be separated by 10. 2 units. Furthermore, since the
temperature curve is symmetric about its maximum,
(36) would suggest that ¢, should be antisymmetric about
its zero. This effect is correctly observed in Fig. 12,
The velocity distribution is delayed with respect to the
temperature distribution, but this symmetry property is
unaffected.

At the same value of z, corresponding to the center of
velocity of the z component, the radial component v, is
plotted in Fig. 13. This value of z corresponds also to
the largest radial velocities, so that z=232 might also
be termed the site of greatest kinetic energy in the fluid.
The radial velocity maximum is 4600 times larger than
the maximum axial velocity. This effect arises because
of the great disparity in the intensity widths in the two
directions. As a matter of fact,

(v,) z, 9x10°
m
—L—ﬂ(v,)m =4625 d -—QO = 200 = 4500 .

The curve of v, is forced to go to zero, as » goes to
zero, by the boundary conditions shown in (5). One
notes, however, that the peak is located at the distance
0. 257, from the axis, exactly the location of the maxi-
mum of 8, /9» shown in (33). Thus one finds

Lol T
T 3r dr (37)
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as would be expected from the differentail equation for

v,.

Bringing up the rear in the sequence of effects is the
density minimum at z =31, 5. The density decrement
~(p—-p,) is shown in Fig. 14, Using (25), one might
expect

3% °T
5;@ el (38)
so that p and 7 will have the same z dependence. * There
should, however, be a double time delay, since two time
integrations are indicated in (38). The width of the den-
sity decrement is found to be 14,5, about 3% wider than
the thermal and intensity widths. The maximum frac-
tional decrement (p, = p)/p, ¥4 X107,

The radial density distribution is exhibited in Fig. 15
at z=232, the location of the density minimum in the z
profile. Again, a double log plot is given so that both
positive and negative density excesses can be conve-
niently represented. This time a density pile up is ob~
served because the fluid has been blown away from the
axis so fast that a compression wave is generated. The
zero in the graph is at 0. 36y, right at the half-widths
of the thermal and intensity distributions, Thus inside
the thermal half-width the density is depressed; outside
the fluid has piled up. The radial density profile shown
in Fig. 15 is in excellent agreement with that predicted
in (27). For example, the zero observed at »/%, =0. 38
is predicted to occur at

v/%=1/V8=0.354.

Similarly, the location of the peak observed at /7
~0. 51 is predicted to occur at

r/%=7%.

Similarly, the ratio of peak height to valley depth is also
correctly predicted. As a matter of fact, when one takes
the trouble to evaluate the function F(z, ) appearing in
(217), he finds precise agreement between (27) and Fig.
15. Thus, both (27) and (28) are in complete quantitative
agreement with the result of the computer calculation,

Figures 16 and 17 exhibit the parade of effects, illus-
trating graphically the various delays, pulse shapes,
and widths. Physically the delays make sense. First the
beam blasts through, heating the fluid as it passes. As
explained above, the temperature maximum moves at

ic and, thus, behind the laser peak. As this tempera-
ture wave passes along, the fluid picks up kinetic energy
and the flow velocities increase. The center of this ef-

J. Appl. Phys., Vol. 44, No. 8, August 1973

Reichert, Wagner, and Chen: Propagation of intense Gaussian laser pulse

3658

fect trails the heat wave, allowing time for the fluid to
respond. Then, as the fluid begins to flow away from the
propagating center of velocity, density deficits are left
in the wake and corresponding radial compression
waves set out from the beam axis.

VI. SUMMARY OF RESULTS

In portions of the pulse where the intensity is small,
there is very little interaction with the fluid and these
portions move without appreciable distortion. The peak
of the pulse, however, interacts fairly strongly with the
fluid and the peak is delayed relative to the center of the
pulse. A parade of effects ensues; the center and edges
of the pulse are followed by the peak, which, in turn, is
followed consecutively by the thermal wave, the center
of velocity, and the density waves. The front edge of the
pulse propagates without appreciable distortion, but
strong phase oscillations are set up near the peak and
rapidly overtake the undistorted front section indicating
that soon the entire beam will be distorted to some de-
gree. The strongest instabilities predicted in the lin-
earized analysis of Ref. 1 could not appear in the com-
puter solution because they are generated by ripple with
wavelength an order of magnitude smaller than the mesh
size used. The success of the analytic analysis present-
ed here suggests, however, that such instabilities are
not important for the time interval considered.

There is very little hope of obtaining computer solutions
of the laser-fluid equations except in the tightly limited
regime reported here, unless a different calculational
procedure can be devised. Since, however, it appears
that a certain amount of analytical headway has been
made, there is reason to believe that, with appropriate
combination of analytical and computer methods, the
beam can be followed for considerably longer periods of
time. Effort is currently being directed toward this
objective,
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