Instabilities of intense laser beams in air®
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Various aspects of the propagation of an intense laser beam through the atmosphere are considered.
The basic laser-fluid equations are presented and a linearized analysis of these equations is given
which predicts a very low power threshold for Brueckner—Jorna-type convective instabilities.
Another class of instabilities is predicted to be of more practical importance than the convective
instabilities and an effective Reynolds number is derived which may help to characterize these
turbulent instabilities. In the following paper by the same authors a computer solution of the full
set of nonlinear equations is described and the initial development of the laser-fluid interaction is

investigated.

. INTRODUCTION

The present paper and the following paper! are con-
cerned with the distortions of a laser beam produced by
density and thermal variations in a fluid medium. These
distortions have been the subject of many investigations
which can be classified into two groups, depending upon
whether time dependence is considered. Most available
experiments are conveniently understood by reference to
theoretical studies of the gross effects of thermal dep-
osition and fluid motion which assume that a steady
state will be achieved for the deflection and distortion
of the laser beam. On the other hand Brueckner and
Jorna? have discovered that some of the solutions for
beam propagation are unstable so that under certain
conditions a steady state may not develop. The Brueck-
ner-Jorna instabilities were discovered in a linearized
analysis, but the threshold for such instabilities has not
been discussed previously. The Brueckner-Jorna in-
stabilities are not observed in practice because they are
convective instabilities and cannot develop within typical
distances allowed for the propagation of beams in the
laboratory.

In the present paper the linearized analysis is present-
ed, keeping the four-photon coupling induced by periodic
fluctuations in the dielectric constant, so that among
other things the threshold behavior will be exposed. The
basic equations are given in Sec. II and the linearized
analysis is presented in Sec, III. In Sec. IV another
class of instabilities is predicted to be of more practical
importance than the convective instabilities and an ef-
fective Reynolds number is derived which may help to
characterize these turbulent instabilities.

The companion paper' describes a computer solution of
the full set of nonlinear laser-fluid equations. Enormous
power was presumed for the laser beam in order to
drive the laser-fluid interaction as fast as possible in an
attempt to watch the onset of distortions of the beam.

il. BASIC EQUATIONS

When an intense laser beam propagates through a fluid,
many intersting phenomena take place, This laser-fluid
system can be described by a macroscopic model which
involves Maxwell’s equations, the Navier-Stokes equa-
tion, an energy conservation equation, and the continuity
equation for fluid motion. These equations, which de-
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scribe the behavior of intense electromagnetic beams
and the associated sound and thermal fluctuations, are
coupled by stimulated Raman scattering, electrostric-
tion, the high frequency Kerr effect, absorption heat-
ing, and the density and temperature dependence of the
dielectric constant. In this paper a systematic discus-
sion is presented for an intense laser beam propagating
through air, which has a negligible Kerr constant. If
the frequencies are outside the Raman scattering range,
the instabilities are primarily caused by optical-ac-
coustic coupling of the laser beam and the gases. These
effects are of long duration compared to those of self-
focusing. As the beam passes through air, the intensity
profile induces a nonuniform temperature gradient
transverse to the propagating direction of the beam, due
to the energy absorption from the beam. This thermal
nonequilibrium and electrostriction together cause the
generation of a density gradient and hence a sound wave.
These density changes react back on the incident beam
through changes in the dielectric constant.

The equations describing propagation of electromagnetic
radiation and the equations describing fluid behavior are
widely known. 3~® Dropping unimportant terms from the
full equations, we take the following set of nonlinear
coupled partial differential equations for description of
the macroscopic representation of the laser-fluid
system:

Wave equation and Clausius-Mosotti relation:
1 932 o 0
2R — — — —_——
VE= 352 (eE) + -5 VEE), (1)
e=¢€; +eED,,,
de (e=1)e+2) de .
(i), 3 (1) @

Navier -Stokes equation:

Dv
P‘I‘fng"vp"“fu +!visc’ (3)
fr0c =NV +(n +7)V(V-V), (4)

heat transfer equation:
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oC D_]: _ C,,(:Z - I)QB =¢,+ V> (kvT) + C!C\/5_<Ez>avs

v Dt B Dt
(6)
I VGITRNECTA G D §- U7
¢"“[”<ax, * ax,> n 3%, 6”] ox; ’ D
fluid continuity equation:
a
2+ (pv)=0; (8)

equation of state:
P=P(p,T)=RpT. (9)

In the wave equation the term involving «, the linear
absorption coefficient, is associated with a model for
the absorption of electromagnetic energy by the fluid. ®
The absorption coefficient is taken to be independent of
the frequency of the electromagnetic radiation, so the
model is not valid near the resonance lines of the
molecules in the fluid. Also the model does not include
kinetic rate equations, so saturation effects are not
considered. In the present model the electric field E
will be damped by a factor exp(-3@z), where z is the
direction of propagation and the energy deposited in the
medium is taken to be acve(E?,,=al,, where I, is the
laser intensity in erg/sec cm2.”

The terms €, and ¢, are the linear and nonlinear permit-
tivity coefficients, respectively, p is the fluid mass
density, and v is the velocity of a “material element” of
the fluid. The convective derivative D/Dt follows the
motion of a material “particle” of the fluid relative to a
fixed coordinate system and is expressed in the form
D() _3()
32— = -&- +V. V( )
The vector g is the gravitational acceleration vector and
1 and n’ are the shear and compressional viscosity co-
efficients, respectively.

The electrostrictive force density {,, is given by

0
(fes)i = <% 0U>av,

where ¢y, is the interaction stress tensor for the elec-

tromagnetic field and the fluid and the angular brackets
indicate a time average over several optical periods. A
derivation of the stress tensor is given on p. 67 of

Ref. 4:

3
U“ = —%EZ[E _p(é;) ]5,1. +6E¢Ej,
T

but this tensor is not strictly correct for optical fields
because an isothermal constraint was imposed. A simi-
lar derivation with an isentropic constraint gives the
same result, except that the partial derivative (ae/ap)T
at constant temperature is replaced by (d¢/9p),, the
derivative at constant entropy. The difference in these
two constraints is contained in the thermodynamic
relation

o€ de o\ (vCs )'1
—) =p{—=) +T({—= -B8T) . 10)
p<8p>s (ap)r (8T>p(ﬁv§ g (
The difference term in Eq. (10) is very small because,
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for gases, (9¢/8T),=0. The term (yC,/pv% - BT)™* con-
tributes a factor of roughly . Actually, neither con-
straint is strictly valid, but corrections would be small
and would necessitate a detailed examination of fluid
boundary layers and the explicit mechanisms of heat
deposition in the control volume.

The thermodynamic quantities appearing in the above
equations are C, and C,, the specific heats in erg/gdeg
at constant volume and pressure, respectively, and y is
the ratio of specific heats, C,/C,; 8is the thermal ex-
pansion coefficient, —(1/p)(3p/3T),; v, is the isentropic
velocity of sound, [(3P/3p),]'/?; and k is the thermal
conductivity of the fluid.

Due to the complexity of the laser-fluid equations shown
above, it is not possible to obtain exact solutions analy-
tically. The linearized solutions have been discussed?
and a number of computer solutions have recently been
given by various groups.® In Sec. III a linearized analy-
sis of this set of equations is presented.

I11. LINEARIZED ANALYSIS

Linearized-analysis is a standard perturbation technique.
In this scheme it is assumed that each of the dependent
variables in the problem can be expressed as the sum of
its slowly varying zeroth order component and a small
first-order correction.® In this way, a set of linear
equations for small disturbances is obtained. This ap-
proach to the analysis of the laser-fluid system was
first investigated by Brueckner and Jorna.? In the pres-
ent approach, two variables are used to describe the
perturbed electromagnetic field, one for the component
of the field which is vibrating in phase with the primary
beam and one for the component out of phase. In this
way, the four-photon coupling induced by periodic fluc-
tuations in the dielectric constant can be included. This
coupling was not included in the original formulation
given by Brueckner and Jorna and accounts for the ab-
sence of a threshold in their analysis. The dispersion
relation for these linearized equations has been evaluat-
ed and is more complicated in structure than that pre-
sented by Brueckner and Jorna. For propagation
through air, however, the numerical differences are
minor. The wave with the largest growth rate, resulting
from resonant interactions between scattered electro-
magnetic waves and the thermal wave, propagates al-
most perpendicularly to the laser beam. The direction
is such that the change in frequency of the scattered
electromagnetic wave and the frequency of the thermal
wave (which is zero) are approximately the same.

Writing
E~E,, +Eqy),
P =P +Pu "
T=T,+T,, ( )
€oe =€1¢0) T€200XEfor ay

and taking
E(O)=%éyEoeXp[i(th—-kLz)]exp(_%az)+c_c_’ (12)
E, =3é&,{rexpli(w,t -k, - x)]

+gexp[~i(wt -k +x)]texp(-3az) +c.c., (13)

Downloaded 14 Sep 2009 to 163.13.32.114. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



3643 Reichert, Wagner, and Chen: instabilities of intense laser beams in air
1/p X
<2}>=§(£,>exp[z(wt -k.x)]+c.c., (14)
L
where

w; = laser frequency,
WS wptw, (15)
k,=k, 2, kK,

and treating the velocity v to be a first-order quantity,
we obtain from Egs. (1)—(9) the following four equations
relating f, g, p’, and T’:

[(50e +%52(0)Eg)wf - Czkf]f"'(%fz(mngf)g

+(3AE w?)p’ +(3BE,w) T’ =0; (16)
(3¢ z(o)ngf)f +[(eoe +%62(0,E3)w5 ~cRilg
+(3AE,w?)p’ +(3BE,w) T’ =0; (17)

(aclene) /2Eo) f +[aclen,) 2Eolg +{ilC (v - 1)/Blw}p’

+ (= kk? = ip,C )T’ =0; (18)
[F(€0e = Dleg, +2)Ek?]f +[%(€0e = 1€oe +2)E o]

+{w? —iNwk? ~ [u? - +(eq, - 1) JAER}p!

+{[-w?Bp, + 5(€0e — 1)BEE]R?}T” =0. (19)

Throughout these equations, E, has been written in
place of | E,|. Since only the magnitude of the complex
amplitude appears, E, may be considered to be real and
positive without loss of generality. For convenience in
writing these equations, the following notation has been
introduced:

W =v/y, (20)

s0 that « is the isothermal speed of sound in the un-
perturbed medium, and

_ o€z aez) 2 1 (eoe—l)(eoe +2)
A=(ZE) +(Z2) (Boppyn — et T 20,
(ap)r (ap Elodar® o 3

N=(2n+1')/po-

The consistency condition for the linearized equations
is the vanishing of the determinant of the coefficients of
f> & p’, and T’. Thus we obtain the following relation
between the frequency w and the wave vector k, the dis-
persion relation for the system:

{(w =ik ) w? — iNwk? = (1? - A")E?] = (y — 1)(4® - B")wk?}
X[£,&. ~ ex0) EalE,0? +E.0}) /20, ]
== (AR} py Alw —ik’E?) +i(acnyB/C N4 - B')]
+B{[(y - 1)/BBAwE? +i(acng,/poC )w? - iNwk?
- (2 -ANEDLEX £, 0% + £ 0w2)/ 2w, . (22)

In order to put Eq. (22) in the slightly more compact
form shown above, the following additional abbrevia-
tions have been introduced:

K =K/peC»

Noe =(€0.)" /% = index of refraction of unperturbed
medium,
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I E%n(,ecE?, = power in incident laser beam/unit area,
r=4(e,, — DAEZ, (23)

B =% (eo, — 1BE}/poB,

2wk, =Rt — €02,

2wk =k -6 00

For comparison, the dispersion relation obtained by
Brueckner and Jorna? for frequencies outside the Raman
scattering range is

w(w? - 0282 — iNwk?)E, +1(vw +i0)k2 =0, (24)
where
£, =[1? = (26300, /MyecM k3 ] = Hnoglp/ cl)[w = (c/nop)k, Iy
v = p, A% /nd.c, (25)

5 =2A 5k /mC,-

Although Eq. (22) is considerably more complicated in
structure than Eq. (24), the general features of the two
equations are the same. As a first approach to the
analysis of (22), one should realize that the power in
the primary laser beam is proportional to E3, Thus,
the free modes of the system can be obtained by letting
E2—0. With no power in the incident beam, therefore,
(22) reduces to

{lw = i(k/poC YN w? = iNwk? = u?k?) = (y - 1)uwk?}
X[ (k2 + 12 +2k k) €1 o)Wy +w)°]
X[c*(k2 +E2 =2k ks) €10 (wy — w)?]=0. (26)

The first factor in (26) contains a nonpropagating ther-
mal wave and two damped sound waves coupled by the
term (y — 1)u?wk?®. The last two factors correspond to
the four free modes for scattered undamped electro-
magnetic waves:

w/wy =0+[1 +E*/E% +20k,/ |k, | M2,

where 0=+1, specified by given values of #* and k;.
Two of the roots are low frequency (w < w;), whereas
the other two have frequencies of the same order as the
laser frequency. It is clear that the roots at the high
frequency should be eliminated, because it has been
assumed previously, in evaluating time averages, that
the perturbed solutions vary much more slowly than the
optical waves. Therefore, factors like

(27

PR —ep 0l (28)
will be replaced by

ezowr ek, —w,), (29)
where

cr=c/[ero]'/ 2= velocity of light in the medium.

Thus the free modes will include three thermal-sound
waves and two electromagnetic waves.

All of the terms in (26) result from the left-hand side of
(22) because the right-hand side is proportional to the
power in the primary laser beam. Now, as the power in
the laser beam is turned on, the right-hand side couples
the five free modes described by (26). Additional tiny
coupiing arises inside the left-hand side itself through
the A’, B’, and ¢y, terms.
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For detailed consideration, the case of a primary laser
beam at 10. 6 y propagating through air at approximate-
ly 10°C and at standard pressure will be discussed. The
numerical values for the parameters appearing in the
dispersion relation are'®

wy =1.773 x10" sec™,
b, =5920 cm™,
po=1.25x10"% g/cm?,
N=0.284 ¢cm?/sec,
B=3.67x10" deg™?,
C,=1.143x10° erg/g deg,
k" =0.28 cm?/sec,
no=1+2.82x10",
u?=8.39x10° (cm/sec)?,
y=1.4,
€r¢0y=1+5.65x10", (30)
o=(3%10"" cm ) a,,
amoecu®B/C = 3. 831 x10%q,,
M./ PoC, =0.988a,,
Les0 E2=(1.37x107% sec®/g cm®)I,,
A=0.452 cm®/g +(1.10x10°* cmsec®/g?)I,,
Aly -1)/28=24.7 cm®deg/g
+(6.00x10"% cmsec®deg/g®);,
€0 =1 +5.65x10™ +(1.37x10"* sec®/gcm?)/,,
A7=(2.84x10""5 cm?sec/g)l; +(1.38x107% sect/g?)I},
B=¢€,,Ee/Ty=~(4.84x107% sec®/gcm?deg)l,,
B’ = —(0.662x10°% sec*/g)IZ.

In the above list a dimensionless absorption constant «,
of order unity has been introduced and the power I, is
in units of erg/sec per cm®. Now, using these numerical
values, one finds that the power-dependent terms are
very small for power fluxes less than 10 MW/cm?, ex-
cept for the term which represents energy absorption.
In other places in the dispersion relation, the power-
dependent terms are connected with the nonlinear index,
and will be omitted in the following. (The terms omitted
are related to self-focusing in a manner described by
Brueckner and Jorna.?) This neglect of the nonlinear
index and of the weak dependence of the optical coeffi-
cients of gases on the temperature for fixed density
allows the simplification of the dispersion relation to

[(w =ik’ BN w? = iNwk? = #2R?) = (y — 1)uPwhk?]
x(cpk, —w,Nc k. —w.)
=~=(ARPw I /2ce)(c ke, = w,) +(cpk. —w)]
x[3p, A(w - ik'k?) +iacn,fu?/C,). (31)

In addition, for air at reasonable powers, the term
3 peA(w —ik’E?) on the right-hand side is negligible com-
pared to acn,fu?/C,. Introducing the variable

v=ky/k, (32)
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instead of k;, and defining
T=Aw Bl /Ve;C,, (33)

which corresponds to the power parameter used in Ref.
2, the dispersion relation can be written in the form

(w — ik’ PN w? ~ iNwk? — 1?k?) - (y = 1 )i wk?
=311 {[w - $iac, — c (kv + 82 /2k )]
' ~lw-3Ziac, - c (kv —F*/2k;)] ). (34)

The problem at this stage is the determination of the
maximum growth rate of any Fourier component of a
distortion of the plane wave as a function of the ab-
sorbed power from the beam. That is, one must

solve the dispersion relation for the frequencies as a
function of 2, v, I;, and the characteristic parameters
of the medium, and then find the maximum value of
-Imw for real v and % with |v| <1. Such a problem can-
not be solved analytically without further approxima-
tions. One region of interest would be the high power
limit, where the driving term would overwhelm the
losses resulting from thermal conduction, viscosity,
and the absorption of electromagnetic energy. In that
case, all the imaginary terms in Eq. (34), with the sole
exception of the i immediately preceding 7, can be
dropped, reducing the dispersion relation to the form
employed by Bruecker and Jorna in Eq. (45) of Ref. 2.

To proceed analytically, Brueckner and Jorna neglected
the term in the second set of brackets on the right-hand
side of (34), and assumed that the maximum growth rate
would occur somewhere on the curve in the v, % plane
determined by the constraint

Re[w = c (kv +£%/2k;)]=0. (35)
Along that curve, the maximum growth rate is
(- Imw)y,,=3V7(1.08), (36)
which corresponds to
0.97515 1 1/2
—(Lp)/2( s
vk =(z7) (0.56305)(0.93063) : (37)

(These results differ from those in Ref. 2, which are
erroneous. ) There is no assurance that the actual maxi-
mum growth rate does lie along the one-dimensional
subset of the v, % plane assumed in Ref. 2. We have con-
ducted a search along the line

v+ k/sz =0.
However, the result for the maximum,
$V7(1.06), (38)

is 2% smaller. No other curve in the v, k plane has been
found which allows an analytical search. Nevertheless,
one suspects that these answers are sufficiently close
and that further analytical effort is not justified, be-
cause of the previous approximations.

An interesting unknown not discussed previously is the
power flux required to stimulate these instabilities.
This threshold power is clearly a critical function of the
losses in the system, which therefore renders it im-
portant to treat them carefully. If the second term on
the right-hand side of Eq. (34) is dropped, the instabil-
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ity appears to have no threshold, because the conduction
loss, which must be overcome, vanishes as #—0. How-
ever, as k— 0, the Stokes and anti-Stokes terms on the
right-hand side of Eq. (34) tend to cancel each other,
and, therefore, there is a threshold power flux for
these stimulated thermal Rayleigh scattering instabil-
ities. Using (34), a computer search for this threshold
was performed and led to the result.

(1) threshora=0- 329 mW/cm?. (39)

This threshold was located at k=0.04 ¢m™ with v
=+1,1x10"%, The degeneracy in the value of v occurs
because of the symmetry property contained in (34),

v — —v implies iw— (iw)*. The dispersion relation of
Brueckner and Jorna contained no threshold for the
convective instabilities and, therefore, suggested that
instabilities might be present for extremely low beam
intensities. The $-mW per cm? threshold obtained in the
present analysis is certainly small in relation to in-
tensities available for experiments.

The presence of a wind does not alter the growth rates
for distortions. This can be easily seen by considering
the problem from a frame of reference moving with the
fluid. A uniform beam remains a uniform beam in the
moving frame, although its direction of propagation is
shifted. This shift in direction has no effect upon the
stability discussion. The very low convective instability
threshold does not mean that such effects are easy to
observe or are of practical importance. An extremely
long, and carefully protected, optical path length would
be required in order to see these instabilities grow to
observable sizes. Indeed, such instabilities have never
been observed in the laser-fluid system.

There is, however, another class of instabilities in-
volving the balance between inertial terms and bouyancy
forces in the fluid. Such instabilities are discussed in
Sec. IV.

IV. BEAM-FED TURBULENCE

Many experiments have been reported for which the-
ories assuming steady-state beam profiles, after initial
transients die out, provide rather good explanations of
the principal features. However, that is probably true
only because these experiments are conducted at rela-
tively low power fluxes. Theoretically, one expects a
time -dependent state of the system because of the in-
stabilities discussed earlier. Such instabilities are not
observed in practice because they cannot develop within
the distances allowed for the propagation of beams.
However, alternate considerations for a beam of finite
cross section suggest that the beam may drive the fluid
into a time-dependent, or turbulent, state at powers
which are not completely unreasonable.

It may be impossible to prove analytically that such a
turbulent state develops, because the investigation of
hydrodynamic stability is very difficult even for the
simplest flows. However, an argument can be made
from dimensional considerations, an approach that
promises to be very useful. Namely, for the problem
of a beam of radius ¢ and power flux I passing through
air, it is possible to estimate a parameter W, which
plays the role of an effective Reynolds number for our
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problem. It will be shown that the parameter W takes on
values of the order of 30000 for a beam with intensity
I=1kW/cm? of radius 1 m. Since it is known that some
flows with Reynolds numbers substantially lower than
30000 are turbulent, the flows for the laser-heated
atmospheric path should also be expected to show signi-
ficant time dependence.

Consider the equations of motion for the air and the
equation governing heat transfer, which take the follow-
ing form if it is assumed that the air can be assumed
incompressible (that amounts to dropping terms of order
uz/vi, where u is a typical flow speed, and v, is the
speed of sound; for the problems under consideration,
#*/v? will be less than 10°°, and the incompressible

fluid approximation will be quite good):

p(v+ V)V =~ VP~ 8T 08 +(p/pn v*¥
+(p/po)n +1" )WV V),
o Vev)==(v. V)p =Bp(v: V)T, (40)
pCy(Ve VT, = al +V+(kVT,)
+(p/p)n(vy,; +v, P +97/(V-v)].

Assuming the Reynolds number is high, the inextial
terms will dominate the viscous terms in the Navier-
Stokes equation. Thus, there must be a balance between
the inertial terms and the bouyancy forces, which im-
plies that pi?/a ~aBT',g, where p is the density of air,

B is the coefficient of thermal expansion, T, is a typical
value for the temperature rise, and g is the accelera-
tion due to gravity. The pressure variation will be of
order pu®. In the heat-transfer equation, the convection
term will dominate the conduction term, and the beam
heating will overwhelm the viscous dissipation, so that
there must be a balance between heat deposition from
the beam and convective heat transfer, which implies
that pC,uT,/a ~al. Combining these two relations we
find that u®~ o Ba’lg/pC,. With this expression for u, we
then define a parameter W, which is expected to in-
dicate regimes where steady flow and where time-de-
pendent flow may be anticipated. W is an estimate of the
relative importance of inertial terms to viscous terms
in controlling the flow:

W =aupy/n
=alpo/n)aBa’lg/pC,)'/*. (41)

For a beam with =10 erg/cm®sec, a=100 ¢m, T,
—273°K, and o =3X10"° cm-!, W= 30000.

For many experiments described in the literature, the
values of W are much smaller, and thus one would not
expect any turbulent fluid flow to be observed. For ex-
ample, in the original experiment of Gordon, Leite,
Moore, Porto, and Whinnery'! the parameter W takes
on a value about 10°%, and in the more recent experi-
ments of Smith and Gebhardt,? W is of order 10.

The parameter W introduced here is different from the
Grasshof number, which is referred to in some discus-
sions of the convective flows set up by the absorption of
energy from a laser beam.'® In fact, the conceptual
basis for using the Grasshof number in a discussion at-
tempting to explain the transition between smooth flow
and time -dependent flow seems less relevant because
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the Grasshof number appears to be more sensible when
the thermal bouyant forces are balanced by viscous
forces. In the present discussions, the thermal bouyant
forces are balanced by inertial effects. It turns out that
the number W is essentially the square root of the
Grasshof number. **

We are planning experiments to determine the critical
value of W, W, which determines the onset of turbulent
convective flows for the geometry appropriate to laser
beam transmission. It is also our aim to attempt a the-
oretical evaluation of this critical value. At the present
time we can only speculate that W, may be between 102
and 10%.'® The theoretical approach appears fairly dif-
ficult because the question of the stability of flows even
without heat sources has only been answered theoreti-
cally for very simple geometries.*®!” The question of
stability for fluids which are heated or cooled appears
to have been treated mainly for cases in which the fluid
would be motionless, and has not been explored for a
problem like the present one.!"»'® The first part of that
problem would be to determine a steady-state flow pat-
tern for a fluid with a distributed heat source within a
right circular cylinder with its axis aligned at some
angle to the vertical. For the case of a horizontal cyl-
inder of infinitely small radius, the flow pattern has
been calculated by Yih.!%2°

Unfortunately, however, that solution is not of great
value for the present problem because the size of the
cylinder radius is a critical parameter. Nevertheless,
it is expected that Yih’s solution will assist in obtaining
the asymptotic form of the steady-state flow at large
distances from the laser beam cylinder. Once that
time -independent flow pattern has been determined, the
linearization of the hydrodynamic equations for pertur-
bations from the flow pattern will lead to an eigenvalue
problem, which eventually will yield a critical value for
W. Ostrach?! suggests that the eigenvalue problem can
be bypassed as the stability of fully developed natural
convection flows can be found by using the appropriate
velocity profile in the classical theory of hydrodynamic
stability. This assertion rests upon his analysis of the
stability of free convection above a flat heated plate,
where instability first appears for a Reynolds number
of 283.

Above the threshold for beam-induced turbulence, gov-
erned by W_,, general arguments?® lead to a size for the
smallest eddies, a(W,,/W)*/%. For a 1-m beam, if W,
should be about 10%, then the eddies might have sizes

as small as 7 cm for a power flux of 1 kW/cm?. The as-
sociated density fluctuation would then be expected to
result in considerably increased scattering of the beam,

The arguments presented here show that there are sub-
stantially more important sources of instability in the
laser-fluid system than those discussed in earlier
linearized analyses. It is felt that these fluid instabil -
ities will be enhanced by their interaction with the scat-
tering of the laser beam, because of the general result
that instabilities in fluids result if the heating of the

J. Appl. Phys., Vol. 44, No. 8, August 1973

Reichert, Wagner, and Chen: Instabilities of intense laser beams in air

3646

fluid is greater in those regions where the density of the
fluid is greater.2?

At the present time we can only outline the general na-
ture of the effects to be expected above a critical power
level. Much additional work clearly needs to be done,
both of an experimental and theoretical nature.
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