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ABSTRACT 
This paper proposes a nolinear error-correction model based upon logistic smooth 
transition regression methodology. The model is specified such that the short-run 
adjustment toward long-run equilibrium is nonlinear and that the error correction is a 
smooth function of long-run deviation. We use the specified model to investigate 
whether rational bubbles exist in US All REITs market over the 1972:01 to 2005:09 
periods provide empirical support in favor noise trader models where arbitrageurs 
are reluctant to immediately engage in trade when stock returns deviate substantially 
from their fundamental value. 
 
Keywords: REITS, Stock Market Returns, Logistic Smooth Transition  

Error-Correction Model, Arbitrageurs  

                                                 
*Corresponding author: Professor and Chairman, Department and Graduate Institute of Banking and 
Finance, Tamkang University, Tamsui, Taiwan, ROC. Tel: 886-2-26215656 ext.2591. Fax: 
886-2-26214755. Email: niehcc@mail.tku.edu.tw 

 1



Ⅰ. Introduction 
 

Over the past several decades, studies have been devoted to investigate the 
relationship between the stock prices and dividends from both theoretical and 
empirical point of view (see, for example, Campbell and Shiller, 1987; Caporale and 
Gil-Alana, 2004; Han, 1996; McMillan, 2004; Taylor and Peel, 1998).  From 
theoretical point of view, stock price valuation model assume that stock prices 
depend upon the present value of discounted future dividends, where the discount 
rate is equivalent to the required rate of return. This means that stock returns can be 
predicated by the dividend yield and implied that dividend yield are cointegrated 
with stock price. However, this relationship could not be expected to hold exactly 
and deviations may arise due to time-varying required rate of return, speculative 
bubbles and fads, and omission of other relevant variables such as retained earnings. 
A class of speculative bubbles known as rational bubbles, do not violate the rational 
expectations hypothesis and are consistent with the efficient markets hypothesis. 
Investors realize the overvaluation that is compensated with excess positive returns 
for the risk of speculative bubbles. Such rational bubbles are due self-fulfilling 
expectations that can break the connection between prices and dividends over the 
short term. 
     

Recently studies have been devoted to investigate the possibility of bubbles in 
REITs market. Jirasakuldech et al (2005) test for the presence of rational bubbles in 
the equity REIT market over the period 1973:01 to 2003:12 along with the 
sub-periods 1973:01 to 1991:10 and 1991:11 to 2003:12 with the results indicating 
the absence of rational bubbles. They use unit root test and cointegration 
methodologies to prove no evidence of rational speculative bubbles in Equity REIT 
industry. However, Evans(1991) indicates that unit roots test and cointegration 
methodology are in fact unable to detect explosive bubbles in asset price. 

Payne and Waters (2005) use other methodologies, which the momentum 
threshold autoregressive (MTAR) model and the residuals-augmented 
Dickey-Fuller(RADF) test, to examine whether exist periodically collapsing bubbles 
in the equity REITs market. The MTAR model did not indicate the presence of 
periodically collapsing bubbles, but RADF test leaved the possibility of periodically 
collapsing bubbles. 

 
Motivated by the above consideration, in this study we examine the issue of 

rational bubbles in the US All REITs market, using Johansen maximum likelihood 
cointegration tests and comparing the estimation performance of a linear 
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error-correction model and a nonlinear error-correction model. 
   The major contribution of this research is to compare the performance of the 
linear error-correction models with that of the nonlinear error-correction models, 
including a logistic smooth transition error-correction (LSTEC) model, for U.S. All 
REITs market over the period of 1972:01 to 2005:09.  The LSTEC model is 
capable of capturing the market dynamics that differentiate between small and large 
deviations from long-run equilibrium, and more importantly it also allows for a 
gradual transition between regimes, which is consistent with the “stylized facts” of a 
slow mean reversion in asset returns (see, Campbell et al., 1997; McMillan, 2004). 

 
    The study is organized as follows. Section Ⅱ describes the data used in this 
study. Section Ⅲ presents the methodologies used in this paper and the empirical 
results. Section Ⅳ concludes our paper. 
 
Ⅱ.    DATA 

 
The Real Estate Investment Trusts (REITs) become an important real estate 

investment tool in financial market. For example, the total capitalization of the 
National Association of Real Estate Investment Trusts(NAREIT) All REITs index is 
$308 billion, which includes all 193 publicly traded All REITs on 2004 have large 
than the total capitalization of $0.89 billion of 46 publicly traded All REITs in1975. 
This means that All REITs can be the rapid growth and become the popular tool. 
    All REITs are classified in the following categories: (1)Equity REITs own and 
operate income-producing real estate. (2)Mortgage REITs lend money directly to 
real estate owners and their operators, or indirectly through acquisition of loans or 
mortgage-backed securities. (3)Hybrid REITs are companies that both own 
properties and make loans to owners and operators. 

We use monthly data on the prices index and dividends for All REITs were obtained 

from the National Association of Real Estate Investment Trusts (NAREIT) for the period 

1972:01 to 2005:09. The variables of log dividends and log stock prices do not follow 
the normal distribution and are time serially correlated.  The descriptive statistics 
of the sample data are summarized in Table 1. 
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Ⅲ. RESEARCH METHODOLOGY AND EMPIRICAL RESULTS 

A. The present-value model 

    Within the standard present-value model relates the price of a stock to its 

expected future cash flows, its dividends, discount to present using a constant or 

time-varying discount rate. We obtain an equation relating the current stock price to 

the next period’s expected stock price and dividend: 

1 1 , , , , , , , , , , ,,
1

, , , ,t t
t t

P DP E where r is discount rate
r

+ ++⎡ ⎤= ⎢ ⎥+⎣ ⎦
           (1) 

Here, the discount rate is assumed to be constant. This expectation difference 

equation can be repeatedly substituting out future prices as: 

1

1 1
1 1

i KK

t t t i t t K
i

P E D E P
r r+

=

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣
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Any solution can be written in the form 

t DtP P B= +                                                 (3) 

Where 

1

1
t

t t
BB E

r
+⎡ ⎤= ⎢ ⎥+⎣ ⎦
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1
1
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P E D
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=

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥⎣ ⎦
∑  

For future convenience we write this expected present value and bubbles. 

The term, DtP , is sometimes called fundamental value. The bubbles, tB , may 

depend either on  or on wholly extraneous variables. Such asset price and 

 b

tD

rational bubbles may e represented in short term as follows. 

1( ) 1
0 1 1 0 1 1( )*(1 e )tB

t t t tdP B B γ τα α θ θ ε−− − −
− −= + + + + +          (4) 

The parameters in the above equation satisfy γ ,τ  > 0. the stochastic 

process tε is iid and has conditional expectation 1 1t tE ε + = , which ensures that a 

bubble will not switch sign. Specifically, the model investigates nonlinearities in 

rational bubbles adjustment toward its fundamental value. 
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B. Unit Root Tests. 

A significant consensus has been emerging in the recent research, i.e. the 

finan

 

onarity 

again

  (1) 

where  is the time series data studied,  is an i

cial time series data may exhibit nonlinearities; thus the conventional tests for 

stationarity such as the Augmented Dickey-Fuller (ADF) unit root tests may not be 

able to detect the mean-reverting tendency of financial time series variables. 

Should this indeed be the case, it would be necessary to perform the stationary tests 

in a nonlinear framework.  Therefore, we adopt the nonlinear stationary test 

advanced by Kapetanios et al. (2003) (henceforth, the KSS test) in our study. 

Central to the KSS test is the goal to detect the presence of non-stati

st a nonlinear but globally stationary exponential smooth transition 

autoregressive (ESTAR) process.  The model is expressed as follows. 

tttt YYY νθγ +−−=Δ −− )}exp(1{ 2
11 ,      

Yt tv ndependently identically 

distributed error term with a zero mean and constant variance, and 0≥θ  is the 

transition parameter of the ESTAR model and governs the speed of transition. 

Under the null hypothesis, Yt  follows a linear unit root process, but under the 

alternative hypothesis, Y

 

t fo ws a nonlinear stationary ESTAR process.  One 

shortcoming in this framework is that the parameter 

llo

γ  is not identified under the 

null hypothesis.  Thus, Kapetanios et al. (2003) used a first-order Taylor series 

approximation for { )exp(1 2
1−−− tYθ } under the null hypothesis of 0=θ  and then 

approximated equation (1) by using the following auxiliary regressio

t
i

ititt YbYY νδξ ∑

n: 
k

=

        (2) 

Under this framework, the null hypothesis a

−− +Δ++=Δ
1

3
1 ,  t = 1, 2,…., T     

nd the alternative hypothesis are 

expressed as 0=δ  (non-stationarity) against 0<δ  (nonlinear ESTAR 

stationarity). Table 2 presents the KSS nonlinear stationarity test results. These 

 5



results indicate that both stock prices and dividends are integrated of order one. 

For the sake of comparison, we also incorporate the Augmented Dickey-Fuller 

(ADF) tests, the Phillips and Perron (1988, PP) tests, and the Kwiatkowski et al. 

(199  

integration: 

Johansen Multivariate Maximun Likelihood Cointegration Test: 

 more powerful Johansen Multivariate Maximun Likelihood 

ock prices and 

' for the reduced form error correction model (ECM): 

 

2, KPSS) tests into our study and the results are shown in Tables 3A and 3B. 

The results imply that the U.S. All REITs market of prices and dividends are both 

nonstationary in levels but become stationary in the first differences, further 

signifying that stock prices and dividends are integrated of order one, I(1).  On the 

basis of these results, we proceed to test whether these two variables are 

cointegrated by using Johansen Multivariate Maximun Likelihood Cointegration 

Test. 

 

C. Co

   We applied the

cointegration test to investigate the long-run relationship between st

dividends. 

The test hypothesis is formulated as the restriction for the reduced rank of Π:  

H0(r): Π = αβ

( ) tttktktt DXXX ∈+Ψ+Π+ΔΓ++ΔΓ= −−−−− 11111 ...  (where εXΔ

f the adjustment 

arameter and cointegrating vector, respectively.  

rank(Π) < r) is: 

t is white noise)  

where α and β are both p×r matrices, and represent the speed o

p

     The likelihood ratio test statistic for the hypothesis that there are at most r 

cointegrating vector (i.e. H(r): 

( ) ( )( ) ∑ ( )
+=

(1994). 1  There are total five Joha sen VAR models with ECM, which are 

        

−−=−
ri

iTpHrHQ
1

ˆ1lnln2 λ  

This elaborate work has been developed from Johansen (1988) to Johansen 

n

p

                                         
1 Johansen (1992, 1994) developed a testing procedure based on the ideas developed 
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summarized as following forms:2

H0(r) : ktt XXX ( ) tttkt DX′ ∈+Ψ++ΔΓ++ΔΓ=Δ −− 111 ... −−− 11 βα    

XX ∈
 (1
H

988) (3) 
1

*(r): tt DXX ( ) tttktk ′ ′ ′+ΔΓ+ −−−− )1,)(,(... 1011+ΔΓ=Δ −11 β β + +Ψα   
990) (4) 

 

DXX
 (1
H1(r) : tt XX ( ) tttktk ′ ∈+Ψ+++ΔΓ+ −−−− 0111...+ΔΓ=Δ −11 βα μ   

DXXX ∈+Ψ

   
990) (5)  (1

H2
*(r): t tX +( ) tttktkt ′ ′ ′+ Γ Δ + ++Δ −−−−− 0111111 ,)(,(...Γ=Δ ) μα β β

 (1
H

994) (6) 
2(r) : tt XX ( ) tttktk DtXX ∈′ +Ψ++++ΔΓ+ −−−− 10111...+ΔΓ=Δ −11 βα μ μ    

eterministic term, Johansen decomposed the parameters μ0 

  H * β0

 +α⊥γ0

 + αβ1t 
β0 ⊥ αβ α⊥γ1)t 

inistic term, Y = μ0 + μ1t, 

whic

 (1

     To analyze the d

994) (7) 

and μ1 in the directions of α and α⊥ as μi =αβi +α⊥ γi, thus we have βi = (α'

α)-1α'μi and γi = (α⊥'α⊥)-1α⊥'μi. The nested sub-models of the general model of 

null hypothesis Π = αβ' are, therefore, defined as:  

 H0(r) : Y = 0 
1 (r): Y = α

  H1(r) : Y = αβ0

  H2
*(r): Y = αβ0 +α⊥γ0

  H2(r) : Y = α  +α γ0 + ( 1+

Johansen (1994) emphasized the role of the determ

h includes constant and linear terms in the Gaussian VAR. Applying the idea of 

Johansen (1992), the decision procedure among the hypotheses H(r) and H*(r) for 

five different models is presented in the following order: 

  H0(0) → H1
*(0) → H1(0) → H2

*(0) → H2(0) → H0(1) → 1
*(1) → H1(1) → H2

*(1) → H

H2(1)    

  → → ... → H0(p-1) → H1
*(p-1) → H1(p-1) → H2

*(p-1) → H2(p-1) 

logy for 

  

... 

     Table 4 represents the empirical findings from the Johansen methodo

the long-run relationship with the consideration of no trend  between stock prices 

and dividends for U.S. ALL REITs market . 

                                                                                                                                          
by Pantula (1989) to determine the number of cointegrating rank in the presence of 
linear trend [Johansen (1992)] and quadratic trend [Johansen (1994)]. 
2 The equations (4) and (5) are indeed from Johansen and Juselius (1990). 
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<Insert Table 4 about here> 

     Table 4 presents the results imply that there is a long-run cointegration 

. Nonlinear Tests and Estimations from the Logistic Smooth Transition 

els customarily assume that log stock returns are 

i
ititt

=
−+−

1
1110                                    (8) 

where  stands for stock retu

equilibrium relationship between stock prices and dividends indicates a sign of the 

absence of rational bubbles in the U.S. All REITs market during the period of 

1972:01 to 2005:09.. 

 

D

Error-Correction Model 

 Stock valuation mod

determined by a linear relationship between the cointegrated log dividends and log 

stock prices and that any deviations from this fundamental equilibrium are most 

likely short-lived.  After identifying a long-run equilibrium relationship between 

stock prices and dividends, we are now able to describe the stock returns using an 

error-correction model stated below. 

 
k

rz εααα +++= ∑r t

tr rns; )( 11011 −−− −−= ttt dpz θθ represents the 

error-correction term; 1α  measures the sp quilibrium; tp  

and td  respectively represent log stock prices and log dividends, respective  

The optimal lag length k in ∑

eed of adjustment to e

 ly.

=
−+

i
iti r

1
1α  is chosen to ensure there are no serial 

correlations in the residuals )( t

k

ε . 

 To fully capture the different dynamics of both small and large deviations from 

mooth transition error-correction (STEC) model 

i
itit

i
ititt −

=
−+−

=
−+−

1
1110

1
1110

long-run equilibrium, we apply the s

which allows for different types of return behavior in different regimes.  Thus, we 

rewrite equation (8) as follows. 
kk

zFrzrz ετγβββααα ++++++= ∑∑ ),:()()(r     (9) tdt
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 The STEC model is theoretically more appealing than the threshold model in 

that the latter imposes an abrupt switch in the parameter values, and it would be the 

observed outcome only when all traders act simultaneously.  In other words, for a 

market with numerous traders behaving heterogeneously in time, the STEC model is 

considerably more appropriate.  The STEC model is governed by the continuous 

transition function ),:( τγdtzF − , where dtz −  is the transition variable; d is the 

optimal lag length for the transition variable dtz − ; γ  is the smoothness parameter 

measuring how fast the transition is from e (small deviations) to the other 

(large deviations), and 

one regim

τ  is the threshold rameter determining where the 

12 >−−+= −
− −

γστγτγ
dtzdtz               (10) 

               (11) 

 Equation (9) with the transition function (10) is called the logistic STEC 

(LSTEC) model, where 

 pa

transition occurs. 

 As in Teräsvirta (1994), we consider two alternative specifications for the 

transition function in equation (9): 

:( −dtzF 0,]}/)(exp[1{),

0],/)(exp[1),:( 2 >−−−=
−−− γστγτγ

dtzdtdt zzF

~ ∞+=  as =1~0 dtz − ∞−),:( τγdtzF − .  The LSTEC 

model specifies different dynamics for the two different 

oo

return regimes with a 

sm th transition between them.  This specification allows the parameters of α ’s 

and β ’s of the STEC mo to change with fferent values of 

the transition variable dtz − .  If 0

del in equation (9)  the di

→γ , the model is reduced to a linear 

error-correction (EC) model.  If +∞→γ , then 1),:( =− τγdtzF  for τ>−dtz , 

and 0),:( =− τγdtz  for F τ≤−dtz , and accordingly the STEC model becomes a 

two-regime threshold model.  The LSTEC model can, therefore, be vi

error-correction th model with one threshold value 

ewed as a 

reshold (ECT) τ  to distinguish 

mall an eviations from the equilibrium  between two regimes including the s d large d . 
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Since ),:( τγdtzF −  is not symmetric about τ , the LSTEC model is capable of 

generating the asymmetric short-run dynamics in two forms.  The short-run 

dynamics will take on the form, 

t
i

itit
i

ititt rzrz εβββααα ++++++= ∑∑
=

−+−
=

−+− )()(r
1

1110
1

1110  during a period of 

expans

kk

ion with τ>−dt .  However, the dynamics will switch into 

t
i

ititt rz εααα +++= ∑

z
k

=
−+− )(r

1
1110  during a period of recession with τ≤−dtz .  The 

transition from one state to the other is smooth and takes on the form of 

td ετγ +− ),: . 

 Equation (9) with the transition function (11) is called the exponential STEC 

t

k

i
itit

k

i
ititt zFrzrz βββααα +++++=

=
−+−

=
−+− ∑∑ ()()(r

1
1110

1
1110

(ESTEC) model.  The ESTEC model assumes that there are sim cs in the 

extreme regimes but different dynamics in the transition period since 

ilar dynami

1),:( =− τγdtzF  as +∞=−dtz

trically about 

.  The ESTEC model allows the parameters to 

change symme τ  with the transition variable .  In the extreme dtz −

case, when 0→γ , the model is reduced to a linear error-correction model with 

t

k

i
ititt rz ε+ααα ++= ∑

=

)(r .  When−+−
1

1110 +∞→γ , the model switches to the other 

regime with 
k

tt zα ++ −r 11 t
i

itit
i

iti rzr εβββαα ++++= ∑∑
=

−+−
=

−+ )()(
1

1110
1

10 .  Since 
k

),:( τγdtzF −  is symmetric about τ , the ESTEC model gives similar short-run 

dynamics between the periods of expansion and recession.  This model implies that 

be viewed as a generalization of -correct

values to distinguish among three regimes including one w

equilibrium and two outside the equilibrium. 

 In the light of our pursuit to estimate the parameters of 

there is a symmetric transition from one state to the other.  The ESTEC model may 

 the error ion threshold (ECT) model with 

two threshold ithin the 

γ , τ  and d, it is 

essential here to test the linearity with 0),:( =τγ−dtzF  in equation (9) for various 
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values of d before estimating the nonlinear STEC model.  The null hypothesis of 

linearity 0:0 =γH  is tested against the alternative hypothesis of nonlinearity 

0:1 >γH .  Since the nonlinear STEC model can only be identified under the 

alternative hypothesis, it would render the application of the conventional Lagrange 

b m

 that the transitio

multiplier (LM) test of linearity invalid.  Faced with this pro le , we turn to 

Luukkonen et al. (1988) who suggested n function ),:( τγdtzF −  be 

replaced with its third-order Taylor approximation about 0=γ .  Thus, the STEC 

tdttdttdttt 3211

where )...,,,,( 3211 ktttttt rrrrzW −−−−− in our case.  If it is assumed that the delay 

parameter d is known, then the linearity test is equivalent to the test of the 

model in equation (9) can be reformed as follows. 

2
0 )(')(')('' 12) 

hypothesis 

      

t zWzWzWWr ηκκκππ +++++= −−−
3             (

=  

0''': 3210 === κκκH                                       (13) 

          (14) 

where 

An auxiliary regression can be defined as: 

tdttdttdtttt vzWzWzWW +++++= −−−
3

3
2

2110 )(')(')('' κκκππε

tε  is the residual obtained from equation (8) under the null hypothesis of 

.  Thus, the LM test of linealinearity rity against the nonlinear STEC model can then 

be performed by computing the following statistic 

      
)1)1(4/(
))1(3/()(

1

10

−+−
+−

=
kTSSR

kSSRSSR
LM                               (15) 

where is the sum of the squared residuals 0SSR  tε , while is the sum of the 1SSR  

squared residuals v  obtained from equatit on (14).  The statistic has an asymmetric 

F-distribution with 3(k+1) and T-4(k+1)-1 degrees of freedom

 

 under the null 

hypothesis of linearity.  One possible way to identify the appropriate model 

between LSTEC and ESTEC models is through a sequence of tests on equation (14). 
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Thus, we consider a sequence of the null hypotheses as follows. 

 
H

0''0': 3211 ===

0'0':
0':

0

3202

303

==

=

κκκ

κ
κκ

H

H                                      (16) 

r STEC 

model, and we find strong evidence of nonlinearity in the stock returns.  In order to 

specify d, we estimate equation 

where the nonlinearity test statistic with the minimum p value dete

he

in Table 6 show that is rejected for d=9.  Thus, it indicates that the LSTEC 

model would be the more appropriate model. 

Fina

l, including the parameter estimates, model specification 

odel has a 

We would select the LSTEC model provided that 03H  is rejected.  If 03H  is not 

rejected but 02H  is rejected, we would adopt the ESTEC model.  If both 03H  

and 02H  are not rejected but 01H  is rejected, we would select the LSTEC model 

(see Teräsvirta (1994)). 

 Table 5 shows the results of the LM test of linearity against the nonlinea

(14) across a range of values for d ( )101 ≤≤ d , 

rmines the 

optimal value for d (d=7) in the subsequent estimation of equation (9).  T  results 

03

 lly, we attempt to make a comparison between the linear EC model and the 

nonlinear LSTEC mode

H  

tests, and residual tests for both models.  Not surprisingly, the results in Table 7 

consistently suggest that the LSTEC model is superior to the linear alternative based 

on all the different criteria used.  More specifically, the LSTEC m

relatively higher adjusted 2R , lower residual variance as well as lower AIC and 

SBC values, while showing no evidence of the ARCH effects.  Moreover, the 

variance ratio also sho a reduction of 8% in the residual variance of the nonlinear 

LSTEC model, when compared with that of the linear m

ws 

odel. 

 When examining the parameter estimates of the nonlinear LSTEC model, we 

found that although the estimated value of γ (=312.6036) is large, it is not 
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statistically significantly different from zero.  However, Teräsvirta (1994) asserted 

that this should not be interpreted as evidence of weak nonlinearity.  Besides, 

Sarantis (1999) further demonstrated the difficulty of estimating γ , while Sarno 

(2000) argued that the statistical significance of γ  is, in essence, simply not a 

question because the linearity has already been rejected in the earlier tests.  To 

estimate γ  more accurately, many observations in the immediate neighborhood of 

τ ’s are typically required.  Nevertheless, it may not be appropriate nce we would  si

probably end up with a higher standard error for the γ  estimates from the fitted 

model.  The large estimated value of γ  found in our study implies a fast transition 

(a sharp switch) from one regime to the other.  The following logistic transition 

function is further estimated and illustrated in Figure 1. 

   =− ),:( 5 τγtzF -1
5- )/0.2734]}0.3340-036(exp[-312.6{1 tz+ . 

Figure 1 shows that the transition from the lower regime (smaller deviations) to the 

upper regime (larger deviations) is almost instantaneous at the threshold values of 

0= .0 and 0.34.  The short-run dynamics of the stock returns reach the lower 

gime as −∞→− )(

−tz 5

re 5 τ−tz  and 0),:( →5 τγ−tzF , whereas returns reach the upper 

regime as ∞→−− )( 5 τt −z  and 1),:( →τγ5t

 in the lower regime 

a qu  mean reversion to equilibrium e.  These results 

of study

that small and large deviations may exhibit different return dynamics given that 

zF .  Not to be ignored, the stock 

return dynamics are asymmetric, with the not significantly positive coefficient 

(0.0817) of the error-correction term z  included in the upper regime.  It 

suggests that there is no sign of a mean reversion to equilibrium

1−t

but ick  in the upper regim

indicate that the dynamics governing the small deviations from the long-run 

equilibrium differ from those governing the large deviations.  Theoretical models 

ing the interaction between arbitrageurs and noise traders have suggested 
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arbitrageurs l for noise traders to drive returns 

further away from equilibrium.  Needless to say, our results confirm the results of 

are characterized by a quick mean reversion because arbitrageurs have more 

confidence in being able to move the market in the appropriate direction and their 

risk exposure to the adverse price movements is lower.  However, small deviations 

are characterized by persistence and slow reversion since arbitrageurs are reluctant 

to immediately act upon the mispricings due to the fact that they are now exposed to 

greater price risks and adverse market movements.  . 

 
 

In this study, using Johansen maximum likelihood cointegration tests, we 

demonstrate that no rational bubbles existed in the U.S All REITs market throughout 

the period of 1972:01 to 2005:09.  Our application of a logistic smooth transition 

error-correction (LSTEC) model, designed to detect the nonlinear short-run 

adjustments to the long-run equilibrium, provides substantive empirical evidence in 

favor of noise trader models where arbitrageurs are reluctant to instantaneously 

engage in trading when stock returns deviate insufficiently from their fundamental 

value. 

 must always be aware of the potentia

the noise trader models, and therefore, acknowledge the potentially harmful 

behavior of such noise traders.  Let’s come straight to the point.  Large deviations 

Ⅳ. CONCLUSIONS 
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Table 1 Descriptive Statistics of Sample Data 

 
 Log Dividends Log Stock Prices 

 Mean  2.123380  4.439603 
 Median  2.135349  4.472396 
 Maximum  2.954910  5.100119 
 Minimum  1.561885  3.556550 
 Std. Dev.  0.218685  0.273433 
 Skewness  0.293379 -0.558116 
 Kurtosis  4.332006  3.364292 
 Jarque-Bera  35.75008 

   (0.000000)***
 23.26528 

   (0.000009)*** 
Ljung-Box Q(4) 26.381*** 3.4414 
Ljung-Box Q(8) 36.132*** 8.3180 
Ljung-Box Q2(4) 17.169** 30.420*** 
Ljung-Box Q2(8) 26.145*** 86.180*** 

Notes: 1. Numbers in parentheses indicate the p-value for the Jarque-Bera normality test statistics. 
      2. *** denotes significance at the 1% level. 
 

Table 2 The Nonlinear KSS Unit Root Tests 

Log Stock Prices Log Dividends 
KSS 

Level 1st diff Level 1st diff 
t statistics 

of  δ̂ -0.0000009 -0.001255 -0.000215 -0.000705 

Notes: 1. Critical values for the t statistics of are tabulated in Kapetanios et al. (2003). δ̂
      2. Critical values for 10%, 5% and 1% are -1.92, -2.22 and -2.82, respectively. 
      3. Numbers in parentheses indicate the lag length (k) of the following testing model. 

t

k

i
ititt YbYY νδξ ∑

=
−− +Δ++=Δ

1

3
1 ,  t = 1, 2,…., T 

 

Table 3A The Conventional Unit Root Tests for Log Stock Prices 

ADF PP KPSS Log Stock 

Prices level 1st difference Level 1st difference level 1st  diff 

Intercept -0.9234(0) -18.692***(0) -1.3014(8) -18.859***(8) 0.8771***(16) 0.1944(8)

Trend -2.1253(0) -18.7725***(0) -2.4114(8) -18.8724***(8) 0.1187***(16) 0.0811(8)

Note : *,**and *** denote significance at the 10%, 5% and 1% level, respectively. 
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Table 3B The Conventional Unit Root Tests for Log Dividends 

ADF PP KPSS Log Stock 

Prices level 1st difference Level 1st difference level 1st  diff

Intercept -2.0355(0) -16.747***(1) -2.1739(10) -19.725***(9) 1.1775***(16) 0.1602(9)

Trend -3.6137**(4) -16.844***(1) -3.6552**(10) -19.784***(9) 0.1667***(15) 0.0362(9)

Note : *,**and *** denote significance at the 10%, 5% and 1% level, respectively. 

 

 
 
 
 

Table 4.Johansen Cointegration test 
 Model 1 )(0 RH  Model 2 )(*

1 RH Model 3 )(1 RH Model 4 )(*
2 RH  Model 5 )(2 RH

Rank Max-Eigen Critical Max-Eigen Critical Max-Eigen Critical Max-Eigen Critical Max-Eigen Critical

Statistic value Statistic value Statistic value Statistic value Statistic value

R≦0 20 2 15 2 43 43 17.54 11.22 6.98 .89 6.86 14.26 .07 19.38 .02 .14

R 1 ≦  4.

C 1 1 1 1 1 

0.1274 129 4.969 9.164 4.840 3.841 9.846 12.51 7.799 3.841

SB  

 

Table 5 LM Test of Linearity Against the Nonlinear STEC Model 

D 1 2 3 4 5 6 7 8 9 10 
LM 1.1978 0.5923 2.3401 3.3042 1.0357 1.1353 3.3413 0.7886 2.8849 0.4619     
P-value 0.3064 0.7364 0.0311 0.0034 0.4014 0.3409 0.0031 0.5792 0.0092 0.8364

 
  Note: The LM statistics are computed to test the 0''': 3210 === κκκH

t

 in the equation of 

η−−− 32110 ,  dttdttdtttt zWzWzWWr κκκππ +++++= 32 )(')(')(''

)1)1(4/(
))1(3/()(

1

10

−+−
+−

=
kTSSR

kSSRSSRLM  

where is the sum of the squared residuals 0SSR  tε  in , and  is t

k

i
ititt rzr εααα +++= ∑

=
−+−

1
1110  

the sum of the squared residuals in 

1SSR

tv  tdttdttdtttt vzWzWzWW +++++= −−−
3

3
2

2110 )(')(')('' κκκππε . 
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Table 6 Model Specification for the LSTEC Versus the ESTEC Models 

D F Statistics for 

testing H03

p-value F Statistics for 

testing H02

p-value F Statistics for 

testing H01

p-value 

 1 1.636744 0.195930 0.179140 0.836057 1.778663 0.170200 

 2 0.217474 0.804645 0.243483 0.784010 1.327472 0.266318 

 3 1.875782 0.154604 3.484669 0.031610 1.617101 0.199778 

 4 4.268768 0.014655 4.324153 0.013879 1.207292 0.300104 

 5 0.352488 0.703160 0.282646 0.753940 2.490183 0.084195 

 6 0.223857 0.799532 1.240958 0.290240 1.951423 0.143443 

7 4.237659 0.015114 4.281408 0.014477 1.387600 0.250894 

8 0.562723 0.570120 0.554346 0.574900 1.255765 0.286001 

9 5.955234 0.002836 1.440112 0.238161 1.189783 0.305386 

10 0.206683 0.813367 0.388899 0.678067 0.797457 0.451206 

 Note: The F statistics are computed to test a sequence of the null hypotheses: H03, H02, and H01 for the 
equation of . tdttdttdtttt vzWzWzWW +++++= −−−

3
3

2
2110 )(')(')('' κκκππε

0''0':

0'0':
0':

32101

3202

303

===

==

=

κκκ

κκ
κ

H

H
H
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Table 7 Comparison Between the Linear EC and the Nonlinear LSTEC Models 

Variables Coefficients Linear EC Model Nonlinear LSTEC Model
Constant α0 -0.0125(0.0135) -0.0242 (0.0138)* 

zt-1 α1 -0.0312(0.0115)*** -0.0362 (0.0126)*** 
rt-1 α2 1.0035(0.0022)***  1.0052 (0.0022)*** 

Constant β0 - 0.7930 (0.4140)* 
zt-1 β1 -    0.0817 (0.2955) 
rt-1 β2 -   -0.1313 (0.0830) 

Transition Speed  γ -  312.6036 (2191.726) 
Threshold Parameter  τ    0.3340 (0.0339)*** 

Centered R2 0.9983 0.9984 
Model R2

Adjusted R2 0.9983 0.9984 
AIC -3.4040 -3.4600 
SBC -3.3743 -3.3796 

LM Test for ARCH Effects 4.6774 

(TR2) [0.0306] 

1.5637 

[0.2111] 
Ljung-Box Q(4) 1.9229 4.7459 
Ljung-Box Q(8) 6.1770 16.155 

SSR 0.774657 0.699830 
Variance Ratio 0.92 

 

Note: 1. *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. 

     2. SSR stands for the sum of the squared residuals for each model. 

     3. Variance Ratio is the ratio of the variance of the nonlinear model relative to the variance of the 

linear model. 

4. The models were estimated based on the following equation, with 0),:( =− τγdtzF  for the 

linear model. 

tdt

k

i
itit

k

i
ititt zFrzrz ετγβββααα ++++++= −

=
−+−

=
−+− ∑∑ ),:()()(r

1
1110

1
1110  

5. The numbers in parentheses are the standard errors of the estimates. 
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Figure 1 Relationship Between the Logistic Transition Function and the 
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