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Abstract 

 
Different optimization methods or strategies have 

been proposed and utilized to enhance the quality of 

injected products for many years. However, what is the 

machine characteristics to influence the efficiency of the 

optimization method? It is not fully understood yet.  In 

this study, the injection machine characteristics has been 

identified using numerical simulation (Moldex3D) based 

on a round plate system.  The response surface method 

(RSM) was further utilized for both simulation prediction 

and experimental conduction to discuss the efficiency of 

the optimization for operation parameters in injection 

molding.  Results showed that before the machine 

identification and calibration, the quality of injected part 

can be improved by 75% theoretically. At the same time, 

the real experimental system demonstrated worse result.  

However, the difference between simulation and 

experiment has the same amount no matter the system has 

been optimized or not through RSM method.  Moreover, 

after the machine identified and calibrated, the difference 

between simulation prediction and experimental 

observation has been improved by 71.4%.  Also, the 

accuracy of the RSM optimization in the real experiment 

has been enhanced by 50% (from -0.06 mm to 0.03 mm). 

Obviously, it showed that the machine identification for 

the real capability is very important. 

 

Introduction 
 

Different optimization methods or strategies have 

been proposed and utilized to enhance the quality of 

injected products for many years.  In general, some 

optimization methods could integrate various operation 

parameters to deal with the complex system successfully.   

For example, Lee and Kim [1] considered to modified part 

wall thickness within dimensional tolerances to minimize 

the warpage.  Yen et al [2] utilized the diameter and 

length of the runner system to optimize the warpage 

performance.  Ozcelik and Erzurumlu [3-4] tried to 

integrate finite element analysis, statistical design of 

experiment (DOE) method, response surface methodology, 

ANN, and genetic algorithm to reduce warpage.  Zhai and 

Xie [5] applied sequential linear programming (SLP) and 

CAE to optimize the gate performance to achieve a 

balanced flow and then to reduce the warpage of injected 

parts.  Tseng et al [6] have studied the shrinkage behavior 

along the full domain of a mobile phone cover. They 

applied 3D volume shrinkage compensation method 

(3DVSCM) to reduce the warpage.    Moreover, to 

optimize the complex factors, many researchers have 

applied design of experiment (DOE) method, RSM 

method, or other methods.  Tsai and Tang [7] utilized 

response surface method to establish the process window 

of injection molding process for a given form accuracy of 

spherical lenses. They claimed that their proposed method 

for constructing a process window is reasonably accurate 

with 7-10% error.  Xu and Yang [8] integrated Taguchi’s 

parameter design method, neural network and grey 

correlation analysis (GCA) to solve the multi-objective 

optimization problem.  Kitayama et al. [9] applied a 

sequential approximate optimization (SAO) based on the 

CAE simulation to determine the optimal process 

parameter. The data was further used to identify a pareto-

frontier. The idea could be utilized for multi-objective 

optimization, such as short cycle time, warpage reduction, 

weld lines reduction and clamping force minimization and 

so on. Furthermore, Huang et al [10] have been discussed 

the influence of the machine calibration effect on the 

quality optimization using design of experiments (DOE) 

in injection molding.  However, when the optimization 

method is switched to response surface methodology 

(RSM), what is the machine characteristics to influence 

the efficiency of RSM optimization? It is not fully 

understood yet.  

Hence, in this study, the injection machine 

characteristics has been identified using numerical 

simulation (Moldex3D) based on a round plate system.  

Then a series virtual tests based on RSM using the round 

plate system have been performed via computer-aided 

engineering (afterward, it is called CAE-RSM) to 

optimize the processes.  Moreover, the virtual optimized 

factors will be specified into an injection molding process 

for a real experimental testing and see how accurate it is. 

Finally, the machine identification effect on the accuracy 

of quality will be discussed. 

 

Investigation Method and Procedures 
 

In this study, Moldex3D R16
®
 was adopted for 

injection molding processes simulation and CAE-RSM. 



 

Figure 1(a) presents the sprue and runner of the model. 

The main structure is a round plate with diameter of 60 

mm, and 2 mm thickness.  The moldbase and cooling 

channel layout is displayed in Figure 2. The size of 

moldbase is 350 mm x 300 mm x 320.5 mm. There are 

two cooling channels inside the core side and cavity side 

respectively.  The material utilized is ABS (PA757 

supplied by Che-Mei Co., Tainan City, Taiwan).   

Furthermore, to evaluate the quality factor of the 

injected parts, the shrinkage behavior over the injection 

round disc was examined as shown in Figure 3. 

Specifically, the circumference of the injected round plate 

has been divided into eight equal portions using four 

diameters I (DI) to IV (DIV). Then the average diameter is 

obtained, as defined by Equation (1).   In addition, the 

deviation has been considered from the target value (60 

mm). It is defined as the difference between the injected 

diameter and the design diameter as in Equation (2), 

where Ddesign is 60 mm. In the rest of this paper, the 

“deviation” factor will be applied as the standard to 

evaluate the quality.  

 

Dave = (DI + DII + DIII + DIV)/4   (1) 

 

Deviation (mm) = Dave − Ddesign   (2) 

 

Moreover, to verify the accuracy of the numerical 

prediction, the real injection molding system was setup 

based on FCS injection machine (supplied by Fu Chun 

Shin Machinery Co. Ltd, Tainan City, Taiwan.) as 

exhibited in Figure 4.  In order to identify the machine 

performance, one pressure transducer has been installed 

into the system at the sensor node locations as shown in 

Figure 5 for both simulation and experiment. Then a 

series basic test has been performed to make the 

comparison between simulation and experimental results 

with the same operation condition settings.  The operation 

conditions for basic settings are as follows: injection 

velocity setting is 50% (75 mm/s); packing time is 8 s; 

cooling time is 11 s; melt temperature is 210oC; mold 

temperature is 50oC; packing pressure setting is from 50% 

to 100% of the end of filling pressure. 

Furthermore, a series virtual injection molding trials 

based on Response Surface Methodology (RSM) have 

been performed as defined in Table 1.  Specifically, there 

are six factors which have been considered including 

injection velocity (IV), mold temperature (MDT), packing 

pressure (PP), packing time (PT), melt temperature (MLT), 

and cooling time (CT).  Regarding the second-order 

model for RSM in this study, the Box-Behnken Design 

(BBD) algorithm is adopted.  Based on BBD, each factor 

has three level set (-1, 0, +1).  A 54-set of the orthogonal 

array has been constructed as listed in Table 1. Since the 

table is too long, only 20/54 sets have been listed here\.   

Later, before doing the machine identification, the 

detailed operation conditions for each set can be described 

in Table 2.   For example, regarding the injection velocity 

setting, three levels are 25 mm/s (20% injection setting), 

75 mm/s (60% injection setting), and 125 mm/s (100% 

injection setting), respectively.  Here the maximum 

injection velocity of machine is 125 mm/s. Then the 

original operation condition can be selected as the grey 

area (the column of Control factor with “0”) in Table 2. 

Specifically, the injection speed is 75 mm/s.  The mold 

temperature is 50oC. The packing pressure is 95.2 MPa.  

The packing time is 8 s. The melt temperature is 210oC. 

The cooling time is 11 s. The dimensional precision of the 

diameter of the injection round disc will be used as the 

criteria to evaluate of quality for this study. 

 

Results and Discussion 

 
Figure 6(a) presents the comparison of the shrinkage 

behavior between numerical simulation and experimental 

observation via the basic test.  When the packing pressure 

setting is 72% for experimental test, the deviation is 

around zero.  That is at 72% packing pressure setting the 

shrinkage of the injected part can be fully compensated.  

However, to touch zero deviation it needs to change the 

packing pressure to 90% for simulation system.  Clearly, 

even the operation condition settings are exact the same, 

the injection performance capability of the experiment is 

higher than that of simulation counterpart.  But how the 

machine capability can be identified?   To evaluate the 

internal capability, the injection pressure history carve can 

be utilized [10].  Figure 6(b) shows the injection pressure 

history curves for simulation and experimental cases with 

the same operation conditions.  Obviously, the pressure of 

the experimental case is higher than that of simulation one 

over the entire filling and packing period.  It is the reason 

why the deviation of the shrinkage behavior of the 

experimental system is more positive (that is expansive) 

than that of simulation one.  In addition, to evaluate the 

real capability of the experimental system, it can be 

increased the driving theoretically.  When the injection 

velocity is increased to 110% setting virtually, the 

injection pressure history of the simulation is matched 

with that of experimental 50% injection velocity setting.  

The simulation of 110% injection velocity setting and 

experiment of 50% injection velocity setting are regarded 

as the matched pair.  Using the same logic, other 

simulation and experimental matched pairs can be 

obtained. Based on the matched relationship, the real 

capability of the injection machine can be identified and 

calibrated using simulation counterparts.  

Moreover, the injection operation parameters can be 

optimized through RSM technique.  Before doing the 

machine identification and calibration, the RSM 

optimization can be performed based on the recipe 

described from Table 1 and Table 2.  The results are 

presented in Figure 7.  In that Figure, the deviation from 

the simulation is about 0.04 mm, and that from 

experiment is around -0.03 mm for the original design.  

The difference between simulation and experiment is 0.07 



 

mm.  After performed RSM optimization through 

evaluated 54-set of injection molding trials virtually, the 

analysis of variance for second order model can be 

obtained.  The predicted R square is around 77.32%.  

After clean the non-significant second order items, the 

updated analysis of variance for second order model can 

be obtained again.  The revised predicted R square is 

around 91.33%. The relation of the optimized operation 

parameters is achieved.  The optimization result is 

exhibited as “CAE-RSM (Sim)” with deviation of 0.01 

mm.  Furthermore, the optimized parameters can be 

further applied to the real injection molding and result is 

exhibited as “RSM (Exp)” with deviation of -0.06 mm.  

Clearly, after applied RSM optimization, the difference 

between simulation and experimental results are still 0.07 

mm.   Meanwhile, comparing the Original design (Sim) 

and CAE-RSM (Sim), the deviation is from 0.04 mm to 

0.01 mm.  The deviation has been reduced by 75% 

theoretically.  On the other hand, from the difference 

between Original design (Exp) and RSM (Exp), the 

deviation is from -0.03 mm to -0.06 mm (reduced 0.03 

mm) experimentally.  Although the result is getting worse 

in the real system, the variation trend of the deviation is 

exact same as in simulation system. 

Moreover, after the injection machine has been 

identified and calibrated, the parameter range has been 

turned up as listed in Table 3.  Using Table 3 and the 54-

parameter set from the orthogonal array in Table 1, the 

RSM optimization could be executed.  The result is 

updated into Figure 8.  After machine identified and 

calibrated, the deviation of injected part is presented as 

“CAE-RSM (Sim-calibrated) with 0.0 mm by simulation 

prediction.  Furthermore, the RSM optimized parameter 

set has been introduced into the real injection molding, the 

result is displayed as “RSM (Exp_calibrated)” with 

deviation of 0.03 mm in Figure 8.  Comparing to the RSM 

optimized system before identified, the difference 

between simulation prediction and experimental 

observation has been improved by 71.4% (from 0.07 mm 

to 0.02 mm).  In addition, the accuracy of the RSM 

optimization in the real experiment has been enhanced by 

50% (from -0.06 mm to 0.03 mm).  Obviously, it 

demonstrated that the machine identification for the real 

capability is very important. 

   

Conclusions 

 
In this study, the injection machine characteristics has 

been identified using numerical simulation based on a 

round plate system.  The response surface method (RSM) 

has been further utilized for both simulation prediction 

and experimental conduction to discuss the efficiency of 

the optimization for operation parameters in injection 

molding.  Results showed that before the machine 

identification and calibration, the quality of injected part 

can be improved by 75% theoretically, but the real 

experimental one demonstrated worse result.  However, 

the difference between simulation and experiment is the 

same no matter the system has been through RSM 

optimized or not.  Moreover, after the machine has been 

identified and calibrated, the difference between 

simulation prediction and experimental observation has 

been improved by 71.4%.  Also, the accuracy of the RSM 

optimization in the real experiment has been enhanced by 

50% (from -0.06 mm to 0.03 mm). Obviously, it 

demonstrated that the machine identification for the real 

capability is very important. 

 

Acknowledgements 
 

The authors would like to thank Ministry of Science 

and Technology of Taiwan, R.O.C. (Project number: 

MOST 108-2218-E-033-009-) for partly financially 

supporting for this research. 

 

References 
 

1. B. H. Lee, and B. H. Kim, Polymer-Plastics 

Technology and Engineering, 34(5), 793-811 (1995). 

2. Yen C, Lin JC, Li WJ, Huang MF, Journal of 

Materials Processing Technology, 174, 22-28 (2006). 

3. B. Ozcelik and T. Erzurumlu,  International 

Communications in Heat and Mass Transfer, 32, 

1085–1094 (2005) 

4. B. Ozcelik and T. Erzurumlu, Journal of Materials 

Processing Technology, 171, 437–445 (2006) 

5. Zhai M, Xie Y, International Journal of Advanced 

Manufacturing Technology, 49, 97-103 (2010). 

6. C.-H. Tseng, C.-T. Huang, Y.-C. Liu, W.-L. Yang, 

and R.-Y. Chang, SPE Technical Papers, No. 

2096337, 1-6. (2015)  

7. K. M. Tsai, B. H. Tang, International Journal of 

Advanced Manufacturing Technology, Volume, 

75, 947–958 (2014). 

8. G. Xu and Z. Yang, International Journal of 

Advanced Manufacturing Technology, 78, 525–536 

(2015). 

9. S. Kitayama, H. Miyakawa, M. Takano, and S. Aiba, 

International Journal of Advanced Manufacturing 

Technology, 88, 1735–1744 (2017 

10. C.-T. Huang, Y.-H. Hsu, and B.-S. Chen, Polymer 

Testing, 75, pp 327-336 (2019). 

 
 

 

 

 

 

 

 

 

 

 

 

https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.tandfonline.com%2Ftoc%2Flpte20%2Fcurrent&ei=RtD6U-CwI4re8AWTpoDgCQ&usg=AFQjCNHiciF7JksN7SZLdwxY0ChsNI5HsQ&bvm=bv.73612305,d.dGc
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.tandfonline.com%2Ftoc%2Flpte20%2Fcurrent&ei=RtD6U-CwI4re8AWTpoDgCQ&usg=AFQjCNHiciF7JksN7SZLdwxY0ChsNI5HsQ&bvm=bv.73612305,d.dGc


 

Table 1. The orthogonal array for RSM performance (only 20 

/54 sets has been shown) 

 

where IV is injection velocity; MDT is mold temperature; PP is 

packing pressure; PT is packing time; MLT is melt temperature; 

CT is cooling time. 

Table 2. The optimized factors and their levels before machine 

identified 

 
*The grey area shows the original design operation condition. 

 
Table 3. The optimized factors and their levels after machine 

identified 
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Figure 1. The system: (a) geometrical structure, (b) round plate 

with diameter of 60 mm. 

 

 
Figure 2. The moldbase and cooling channel layout. 

 

 
Figure 3.  The diameter of injected part is measured one-by-one 

from four different directions. 

 

 



 

 
Figure 4. The mold structure for the experimental study. 

 

 
Figure 5. The sensor node location or setting up the pressure 

transducer. 
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(b) 
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Figure 6. (a) The comparison of the shrinkage behavior 

between simulation and experiment for basic test, (b) the 

original injection pressure history curves at 50% injection 

speed setting for both simulation and experiment, (d) the 

matched pair for both simulation and experiment with 

simulation 110% injection speed setting is matched with 

experimental 50% injection speed setting. 
 

 
Figure 7. The comparison for deviation between simulation and 

experiment for various operations without machine identification. 

 

 
Figure 8. The comparison for deviation between simulation and 

experiment for various operations with machine identification. 

 


