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Abstract. Carpal tunnel syndrome (CTS) is commonly occurred in occupations using
vibrating manual tools or handling tasks with highly repetitive and forceful manual exer-
tion. Recently, the ultrasonography has been used to evaluate CTS by monitoring median
nerve movements. In order to facilitate the automatic segmentation of shape charac-
teristics for the median nerve, this paper designed a framework that used greedy active
contour detection (GACD) model to extract the median nerve in ultrasound images. We
first selected a ROI to be an initial of virtual contour for median nerve in original ultra-
sound slice, and then proposed GACD method was used to detect the contour of median
nerve. In the experiment, the results show that the performance of the method is feasible
and accurate.
Keywords: Ultrasound, Carpal tunnel syndrome (CTS), Median nerve, Greedy, Active
contour.

1. Introduction. Carpal tunnel syndrome (CTS) is a clinical disorder caused by com-
pression of the median nerve at the wrist, which is commonly occurred in occupations
using vibrating manual tools or handling tasks with highly repetitive and forceful manual
exertion. The diagnosis of carpal tunnel syndrome (CTS) can rely on a combination of
characteristic symptoms and electrophysiologic abnormalities. Nevertheless, an electrodi-
agnostic study remains an expensive and time-consuming procedure not readily accessible
to many physicians who are encountering the disease.
In recent years, ultrasound imaging plays an important role in the diagnosis of CTS,
because of its wide availability, lower cost, non-invasiveness, and shorter examination
time [1]. Ultrasound has been shown to have a sensitivity as high as 94% and a speci-
ficity as high as 98% in the diagnosis of CTS, and can provide structural abnormalities
and diagnostic reference in imaging [2, 3, 4], to make up for the lack of nerve electrical
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inspection. Many scholars have been trying to establish the ultrasound diagnostic criteria
for the diagnosis of carpal tunnel syndrome and its use, including the measurement of
median nerve cross-sectional area, flattening ratio, swelling ratio and palmar bowing of
the flexor retinaculum, etc [5]. Dlley et al. used the cross-correlation between the images
based on the wrists, elbows, shoulders and neck stretches, to measure the sliding elastic
characteristics of the median nerve [6]. On the other hand, Yoshii et al. estimated the
cross-sectional area of the median nerve, block aspect ratio, circularity, block perimeter
and other characteristics, and then judge the differences and effectiveness of these fea-
tures [7].
In order to facilitate the automatic extraction of shape characteristics for the median
nerve, this paper presents a greedy active contour detection (GACD) framework to detect
the contour of median nerve on strain sonographic images. We first chose a ROI to be an
initial of virtual contour of median nerve in original image slice. This pre-processing can
enhance the sensitivity of region contour, and assist to detect the contour of median nerve
by proposed GACD method. Finally, a convergent condition is used to stop the proposed
GACD procedure when the contour of median nerve is found. In the experiment, the
results show that the performance of the method is feasible and accurate.

2. Data Acquisition. In this paper, there are 12 testing data which were supported by
Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist
Tzu Chi Medical Foundation, Taipei, Taiwan. In each case, there are 220 continuous
imaging slices and the scanning time is 20 seconds per case. The size of each imaging slice
is 352*434 pixels. During the scanning procedure, six wrist motions, which include rest,
straight, hook, fist, tabletop, and straight fist, must be completed by each patient within
the time, as shown in Figure 2. Then, the median nerve will be tightened and relaxed by
the six wrist motions at different time points, and displayed in the continuous imaging
slices. After the data acquisition, the contour of median nerve can be obtained by the
proposed curve matching algorithm from the continuous imaging slices.

Figure 1. The first five wrist motions are straight, hook, fist, tabletop,
and straight fist. The final one, straight fist, is a motion simply for taking
a rest break.

3. Segmentation of Median Nerve by GACD Framework. In this section, we
designed a segmentation framework that used greedy active contour detection (GACD)
model to extract the edge of median nerve in ultrasound images. Because the noise and
speckle are always existed in ultrasound image, we have to apply some pre-processing
method to reduce noise and enhance contrast for the region of interest (ROI). We used
ROI to be an initial of virtual contour of median nerve in ultrasound image. The pre-
processing can enhance the sensitivity of GACD to detect the contour of median nerve.
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Through the mechanism of convergence, we can obtain the contour of median nerve, and
the system framework is shown in Figure 1.

Figure 2. The system framework of median nerve segmentation.

3.1. Pre-processing for Contour Initialization. In this sub-section, we briefly intro-
duce the main purpose of pre-processing for contour initialization. At the beginning of
system processing, in order to assist the contour segmentation by proposed greedy active
contour detection (GACD) model, we would select a region of interest (ROI) to be the
initial contour of median nerve. The corresponding control points on this initial contour
can also be generated to assist the computation of GACD framework, as shown in Fig-
ure 3. However, because the ultrasound images have high noise, we used median filter
to decrease the pepper or salt noises in the ROI. Then, the ultrasound images are also
low contrast, and we used histogram equalization to improve the low contrast problem.
Histogram equalization can enhance the contrast that means the ambiguous of ROI can
be a higher than contrast image. Finally, we transferred the ROI to a binary image, and
the gradient of ROI can be more easily to calculate with binary image.

Figure 3. The initial contour of ROI.

3.2. Greedy Active Contour Detection Method. The proposed contour detection
method, greedy active contour detection (GACD), can be divided into three parts: elas-
ticity (Ela), curvature (Cur), Gradient (Gra) [8]. The main idea of GACD method is
from the active contour model (ACM), which can control the initial contour to shrink to
the contour [9, 10, 11]. These criteria can assist the GACD algorithm to compute the
distance, curve, and boundary of region contour by the limitation of control points. The
contour detection will be able to define the target contour that formula as following [8]:

GACD = argMIN(Ela+ Cur +Gra) (1)

where Ela is used to decide the distance between all control points of ROI. Cur is
able to regulate the degree of bending, to limit the curve. Gra means the gradient of
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image that can find out the most likely contour points as GACD. We used three criteria
to decide the control points of ROI to shrink the contour in different iterations. The
above formula is used to search each control point around the 3*3 mask/kernel that we
can choose the argument of minimum GACD to be the control points in next iteration.
Then after several iteration of GACD, the contour will be shrunk on the boundary of
median nerve. In other words, the control points moved with 3*3 mask/kernel in each
iteration to decide their direction of movement, as shown in Figure 4, and P is the set
of control points. During each iteration, the distances between different control points
would be examined. If two control points are too closed, this two control points would
be removed, and new control point would be created at the center between original two
closed control points. If the distance of control point is too far for its adjacent control
points, we will add the center point between this two adjacent control points that can
reduce the program to repeat the calculation of control points.
In elasticity (Ela) part, the adjacent control points are used to decide elasticity that can
limit the distance of the control points with each other. The corresponding formulas are
calculated as following:

d̄ =
|pN − p1|+ ΣN−1

i=1 |pi+1 − pi|
N

(2)

Ela = |d̄− |pi − pi−1|| (3)

where d̄ is the average distance of all control points. Ela is the average distance
between control points to decide the best locational choice of movement [12], and to limit
the distance of control points. In other words, Ela can obtain the more suitable distance
between each control point.
In curvature (Cur) part, the adjacent control points are used to regulate the bending
degree that can decide the curve with two neighboring control points, defined as following:

Cur = |(pi+1 − pi) + (pi−1 − pi)|2 (4)

where pi is the control point. In previous formula, pi is the target control point to
compare with two neighbors of control points, such as pi−1 is pi+1, to decide the bending
condition. Figure 5 is a schema of curvature. When Cur of pi has large value, it means the
curve is not smooth. We hope the bending degree is limited as well as smooth boundary;
therefore, the value of Cur is as small as possible [13].
Gradient (Gra) is always used to detect the edge of image region, and also used to
differentiate of discrete domain, such as Sobel and Prewitt filters, to obtain the region
edge [14, 15]. We used the differential method to compute the gradient value, and the
gradient may be the evidence of contour, defined as following:

g(x, y) =
√
(I(x+ 1, y)− I(x, y))2 + (I(x, y + 1)− I(x, y))2 (5)

where I(x, y) is the intensity of image on coordinate (x, y). Then we normalized the
gradient such as:

Gra =
max(g)− g(pi)

max(g)−min(g)
(6)

where Gra is the normalized of gradient, max(g) is the maximum gradient in ROI,
min(g) is the minimum gradient in ROI. Through the normalization of g(x, y), if the
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value of Gra is become smaller, the control point will be the point on the correct contour.
If the value of Gra is become larger, the control point is not the point what we want.

Figure 4. The movement of control point.

Figure 5. A schema of curvature.

3.3. Convergence of GACD Algorithm. Finally, the convergent condition of pro-
posed GACD algorithm is required to inform the system that we find the contour of
median nerve. In the proposed framework, the control points can be stopped with three
criteria of GACD method. When the contour does not change in next iteration that
means the contour of median nerve is obtained, as shown in Figure 6. At the end of this
step, all control points will be connected to a closed contour, and it will be the contour
of median nerve. Overall, the detail procedure proposed GACD method for segmentation
of median nerve is shown in Figure 7.

4. Experimental Result. In the experiments, there are 12 strain ultrasound cases of
median nerve, and 220 imaging slices in each case. For each testing case, the initial ROI
and corresponding control points were prepared to be an initial contour of median nerve.
According to the computations of Ela, Cur and Gra, the control points of initial contour
can be converged by proposed GACD framework after several iterations. For example,
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Figure 6. The convergence of GACD.

Figure 7. The detail of GACD procedure.

the convergent results of proposed GACD procedure in different iterations are shown in
Figure 8(a). The degree of convergence for case Figure 8(a) is shown in Figure 8(b); the
x-axis is the number of iteration, and y-axis is the convergent degree of contour fetching
in each converged round.
In the evaluation of system performance, we used the precision, recall and F-measure to
prove the efficiency of proposed GACD framework. In the experiments, the mean values
of precision, recall and F-measure can be achieved 85% 91%, 75% 84% and 79% 86% for
all testing cases, respectively. The example of segmentation results for median nerve by
proposed GACD framework from different cases in a testing case are shown in Figure 9,
and the corresponding values of precision, recall and F-measure are shown in Figure 10
(x-axis is the number of testing cases). The higher F-measure is meant that the proposed
GACD framework for segmentation of median nerve is practicable.

5. Discussion and Conclusion. This paper presents a greedy active contour detection
(GACD) procedure to segment the contour of median nerve on strain sonographic images.
We first chose a ROI to be an initial of virtual contour of median nerve in original image.
This pre-processing can enhance the sensitivity of region contour, and assist to extract
the contour of median nerve by proposed GACD framework. A convergent condition is
used to stop the proposed GACD procedure when the contour of median nerve is found.
The experimental results also show that the performance of the method is feasible and
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Figure 8. The convergent results of proposed GACD procedure in differ-
ent iterations.

Figure 9. The example of segmentation results for median nerve in dif-
ferent cases by proposed GACD framework.

Figure 10. The corresponding values of precision, recall and F-measure
for all testing cases.
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accurate.
However, there are several limitations for the proposed GACD method. The computation
of contours is still sensitive to the reference contour. The faulty contour in the reference
image may cause the erroneous result of contour segmentation. Therefore, we will improve
the method of reference image selection by incorporating with more features in the future.
Furthermore, we also need a more robust scheme to correct such erroneous propagation to
improve the performance of contour tracking, and provide valuable structural information
for the diagnosis of CTS.
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