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Abstract — In cloud storage, the third-party auditor (TPA) will perform public 

auditing and data integrity check to maintain the integrity of outsourced data stored in 

the cloud server. To avoid possible user privacy leakage in the auditing process, the 

TPA should learn nothing about the user. This paper presents a new auditing scheme 

which can keep the TPA from learning any user data block in an earlier stage – in 

contrast to previous schemes. Simulation runs are carried out to examine the privacy 

preserving performance of our new scheme and related schemes. The results show that 

our scheme is able to produce better privacy protection at no more computation time 

cost for involved entities, i.e., the user, server and TPA. 

Index Terms — Cloud storage, privacy preserving, third-party auditing, experimental 

evaluation.  

——————————      —————————— 

1   Introduction 

Cloud storage allows users to store data in a very handy way, but how 

to maintain the integrity of outsourced data stored in the cloud server 

remains a major concern and important investigation topic. To check the 

integrity of outsourced data, which is quite a difficult task as local data 

can be deleted after a user saves it to the cloud, we need an efficient 

trustworthy third-party auditor (TPA) to perform public auditing. The 

TPA must be a completely trustworthy third party with no possibility to 

fetch user data or invade user privacy when checking the integrity of 

cloud data. That is, a TPA should learn nothing about users to avoid 

possible privacy leakage during the auditing process.  
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 Following the vigorous rise of cloud applications, a number of 

investigations have come up with different schemes to secure the third-

party auditing process so as to enhance the TPA’s auditing [1-12]. 

Among the researches, [1] proposes a basic scheme which uses compact 

Proofs of the Retrievability (PoR) to enhance user privacy in cloud 

storage public auditing. The PoR scheme nevertheless faces a problem: 

Its practice may allow the TPA to learn about users’ personal data in the 

auditing process, hence inducing privacy leakage. To better preserve user 

privacy, some follow-up schemes involve different designs to improve 

the auditing process of PoR. For instance, the Blind scheme [2] tries to 

enhance user privacy protection by blinding certain parameters. In 

contrast to the original PoR, the blinding design earns better privacy 

protection but is still vulnerable to privacy leakage – as it fails to keep 

the TPA totally from fetching users’ data in the auditing process.   

The major goal of our investigation in this paper is to lessen the 

privacy leakage problem in the above third party auditing process in order 

to advance user privacy protection. That is, we will build an efficient new 

auditing scheme which can improve previous auditing practices to attain 

more desirable privacy preservation for cloud data storage. Our basic idea 

is to keep the TPA from learning any user data block in an earlier stage. 

In our design, we will generate a random parameter p in the early stage 

of key generation, use the parameter to blind metadata σi which contains 

data block mi and then send p to the server. When the server receives a 

challenge message from the TPA for data auditing, it will calculate the 

corresponding proof by σi, mi and p, and return the result to the TPA. The 



TPA then starts the auditing process by the received proof and public key 

pk (generated by the user) to check data integrity.  

To examine the privacy preserving performance of our new scheme, 

we first use a zero knowledge proof to illustrate our ability to keep the 

TPA from practically fetching users’ data. We also use the Pairing-Based 

Cryptography (PBC) library to simulate the performance of our scheme 

and related schemes in different situations. As the obtained simulated 

results demonstrate, in contrast to existing auditing schemes, our new 

scheme can substantially advance user privacy protection with no 

additional computation time for the three involved entities: the user, the 

server and the TPA.  

2   Backgrounds and Related Schemes 

The assumed possible target threats on user data include (1) data 

integrity threats and (2) user privacy leakage threats:   

(1) Data integrity threats may come from both internal and external 

attacks at cloud servers, such as software bugs, hardware failures, bugs in 

the network path, economically motivated hackers, malicious or 

accidental management errors, etc. As cloud servers can be self-interested, 

they may likely hide such data corruption incidents for their own benefits 

in order to maintain reputation [2]. 

 (2) User privacy leakage threats are our major concern in this 

investigation. The threats may come from the TPA who learns the 

outsourced data after the auditing. For instance, the TPA may derive the 

content of user data from the information collected in the auditing process. 



To check the integrity of outsourced data, we need an efficient 

trustworthy TPA to perform public auditing to prevent data integrity 

threats. The TPA must be a completely trustworthy third party with no 

possibility to fetch user data or invade user privacy when checking the 

integrity of cloud data. However, a TPA could learn user data during the 

auditing process and bring up user privacy leakage threats. 

The third party auditing process usually includes User Setup and 

TPA Auditing phases. User Setup contains two steps: key generation 

(KeyGen) and signature generation (SigGen). A user will produce the 

needed parameters (i.e., public and secret keys) in KeyGen and send its 

data as well as the metadata to the server in SigGen. TPA Auditing also 

contains two steps: proof generation (ProofGen) and proof verification 

(VerifyProof). In ProofGen, the TPA first sends the challenge to the 

server which then generates the corresponding proof and sends it back. 

Receiving the proof, the TPA will audit the user's data and return the 

results to the user in VerifyProof.  

The following notations are given to facilitate our later illustration of 

related auditing schemes. 

F: the user's data containing blocks m1, m2, ..., mi, ..., mn 

H(): {0,1}* → G1, the hash function which maps the input uniformly 

to G1 

h(): GT → Zp, the hash function which maps elements of GT to Zp. 

g: the generator of G2 

2.1 The PoR Scheme [1] 



The scheme features Compact Proofs of Retrievability and is hence 

briefed as the PoR scheme [2-4]. It has the following auditing process: 

▲User Setup 

*KeyGen  

(1) choose a random secret key x ∈ Zp 

(2) choose random elements u, name ∈ G1 

(3) choose a random element g ∈ G2 

(4) compute υ = gx 

(5) generate the secret key sk = (x) and public key pk = (u, g, υ, name) 

 

*SigGen 

(1) compute metadata σi for each data block mi, 𝜎𝑖 = (𝐻(𝑊𝑖)  ∗ 𝑢𝑚𝑖)𝑥, 

Wi = name||i. 

(2) send F and Φ = {σi }1≦i≦n to the server 

▲TPA Auditing 

*ProofGen 

(1) The TPA picks random c data blocks to audit (assume the collection 

is I, I = {s1,.....,sc}, c < n). 

(2) The TPA chooses random c elements{νi ∈ Zp}i∈I. 

(3) The TPA generates a challenge message chal={(i, νi)}i∈I to the server. 

(4) Receiving chal, the server calculates the proof message P={σ, μ} 

(𝜎 = ∏ 𝜎𝑖
𝜈𝑖 𝑖∈𝐼 ; 𝜇 = ∑ 𝑚𝑖  ∗  𝜈𝑖𝑖∈𝐼 ) and sends P back to the TPA. 

 

*VerifyProof 

(1) Receiving the proof message, the TPA verifies the following equation 

by the public key pk which the user generates: 



 𝑒(𝜎, 𝑔) = 𝑒( (∏ 𝐻(𝑊𝑖)
𝜈𝑖)  ∗  𝑢𝜇

𝑖∈𝐼 , 𝜐 ). 

(2) Return True if the equation is true or False otherwise. 

 

The PoR scheme, as we have observed, may induce possible user 

privacy leakage because the server needs to send the proof message P (= 

{σ, μ}) along with parameter μ to the TPA. For instance, the TPA can 

learn about data m1 – and all other blocks – by the following steps: 

 

(1) It first picks blocks m2~m9 to audit and stores 𝜇2,9 after receiving 

proof P from the server, 𝑃 = {𝜎2,9 , 𝜇2,9} (𝜇2,9 = ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=2 ). 

(2) It again picks m1~m9 to audit and stores 𝜇1,9 = 𝑚1 ∗ 𝜈1 + 𝜇2,9 after 

receiving proof P from the server, 𝑃 = {𝜎1,9 , 𝜇1,9}  ( 𝜇1,9 =

∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=1 ). 

(3) It then guesses on the random value of m1', calculates 𝜇1,9′ = 𝑚1′ ∗

𝜈1 + 𝜇2,9 , and uses the result to verify equation  𝑒(𝜎, 𝑔) =

𝑒( (∏ 𝐻(𝑊𝑖)
𝜈𝑖)  ∗  𝑢𝜇1,9

′9
𝑖=1 , 𝜐 ). 

(4) If the equation is true, it gets the correct value of m1
' and uses it to 

learn about m1 – user privacy hence leaks. If the equation is false, it 

can go back to (3) to repeat the guessing attempt. 

 

2.2 The Blind Scheme [2] 

The Blind scheme is basically similar to the PoR scheme except that 

it uses a blind way to avoid possible user privacy leakage in PoR (due to 

the fetch of parameter μ). Blind tries to preserve user privacy by 

generating a random parameter r to blind parameter μ. It functions as 

follows. 



▲User Setup 

*KeyGen (same as PoR) 

*SigGen (same as PoR) 

 

▲TPA Auditing 

*ProofGen 

(1) The TPA picks random c blocks to audit (assume the collection is I = 

{s1,.....,sc}, c < n). 

(2) The TPA chooses random c elements{νi ∈ Zp}i∈I. 

(3) The TPA generates a challenge message chal={(i, νi)}i∈I to the server. 

(4) Receiving chal, the server calculates the proof message P={R, σ, μ} 

by choosing a random parameter r and attaining  𝑅 = 𝑒(𝑢, 𝜐)𝑟 , 𝛾 =

 ℎ(𝑅), 𝜎 = ∏ 𝜎𝑖
𝜈𝑖

𝑖∈𝐼  and 𝜇 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 . 

(5) The server sends proof P back to the TPA. 

 

*VerifyProof 

(1) After receiving proof P, the TPA calculatesγ= h(R) by the public key 

pk and verifies the following equation 

 𝑅 ∗ 𝑒(𝜎𝛾, 𝑔) = 𝑒( (∏ 𝐻(𝑊𝑖)
𝜈𝑖)𝛾  ∗  𝑢𝜇

𝑖∈𝐼 , 𝜐 ). 

(2) Return True if the equation is true or False otherwise. 

 

By using an additional random parameter r to blind parameter μ, the 

Blind scheme improves the user privacy leakage problem in the PoR 

scheme. Despite of the improvement, Blind also confronts possible 

privacy leakages because the TPA can still find ways to fetch any data 



blocks. We use the following data m1 as an example to illustrate such 

leaking possibility. 

 

(1) The TPA can get parameter r from parameter R by steps (a) and (b). 

(a) After receiving P = {R, σ, μ} (𝑅 = 𝑒(𝑢, 𝜐)𝑟) from the server, it 

guesses upon r' and uses it to verify equation 𝑅 = 𝑒(𝑢, 𝜐)𝑟′
. 

(b) If the equation is true, it learns that r' is correct; if false, repeat (a). 

(2) It picks blocks m2~m9 to audit and stores 𝜇2,9 after receiving P from 

the server, 𝑃 = {𝑅, 𝜎2,9 , 𝜇2,9} (𝜇2,9 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=2 ). 

(3) It again picks blocks m1~m9 to audit and, after receiving 

𝑃 = {𝑅, 𝜎1,9 , 𝜇1,9} from the server, stores 𝜇1,9 = 𝑟 + 𝛾 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖
9
𝑖=1    

i.e., 𝜇1,9 = 𝛾 ∗ 𝑚1 ∗ 𝜈1 + 𝜇2,9. 

(4) It then guesses on the random value of m1', calculates 𝜇1,9′ = 𝛾 ∗

𝑚1′ ∗ 𝜈1 + 𝜇2,9 and uses the result to verify equation  

𝑒(𝜎𝛾, 𝑔) = 𝑒( (∏ 𝐻(𝑊𝑖)
𝜈𝑖)9

𝑖=1
𝛾

 ∗  𝑢𝜇1,9
′
, 𝜐 ). 

(5) If the equation is true, it knows m1
' is correct and use it to get m1 (user 

privacy thus leaks); if false, it can return to (4) to repeat the guessing 

attempt. 

 

3   The Proposed Scheme 

Our basic idea, as mentioned, is to keep the TPA from learning any 

user data block in an earlier stage. That is, to prevent user privacy leakage, 

we can conduct – in advance – some calculation on user data blocks 

without affecting the original third-party public auditing features. The 



idea leads us to the construction of an efficient new scheme which will 

blind each user data block in an earlier stage to avoid possible user 

privacy leakage in the auditing process and to secure better privacy 

protection than existing schemes, including the PoR scheme and other 

blind schemes.  Different from the original Blind scheme [2], our new 

scheme will generate a random parameter p in the key generation stage 

and use p to blind metadata σi which contains data block mi. After the 

calculation, the user sends parameter p to the server. When a TPA sends 

a challenge message to the server for data auditing, the server will 

calculate the corresponding proof by metadata σi, data block mi and 

random parameter p, and return the proof to the TPA. The TPA then uses 

the received proof and the public key pk (generated by the user) to audit 

data integrity. Such a simple but effective practice can practically solidify 

user privacy protection because it helps reduce the probability of privacy 

leakage as much as possible during the auditing process. 

Our new scheme works as follows. 

▲User Setup 

* KeyGen 

(1) choose random secret keys p, x ∈ Zp 

(2) choose random elements u, name ∈ G1 

(3) choose a random element g ∈ G2 

(4) compute υ = gx 

(5) generate secret key sk = (p,x) and public key pk = (u, g, υ, name) 

 

* SigGen 



(1) compute metadata σi for each data block mi, 𝜎𝑖 = (𝐻(𝑊𝑖)  ∗ 𝑢𝑝∗𝑚𝑖)𝑥, 

Wi = name||i. 

(2) send p, F and Φ = {σi }1≦i≦n to the server 

 

▲TPA Auditing 

* ProofGen 

(1) The TPA picks random c blocks to audit (assume the collection of c is 

I, I = {s1,.....,sc}, c < n). 

(2) It then chooses random c elements{νi ∈ Zp}i∈I, generates a challenge 

message chal = {(i, νi)}i∈I and sends chal to the server. 

(3) Receiving chal, the server will calculate proof message P = {σ, μ} 

(𝜎 = ∏ 𝜎𝑖
𝜈𝑖

𝑖∈𝐼 ; 𝜇 = 𝑝 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 ) and send P to the TPA. 

 

* VerifyProof 

(1) Receiving proof P, the TPA moves to verify the following equation by 

the public key pk (generated by the user): 

𝑒(𝜎, 𝑔) = 𝑒( (∏ 𝐻(𝑊𝑖)
𝜈𝑖)  ∗  𝑢𝜇

𝑖∈𝐼 , 𝜐 ). 

(2) Return True if the equation is true or False otherwise. 

Note that, in the above auditing process, when we maintain the 

equation to be true so that the TPA can audit data integrity, we meanwhile 

ensure better privacy preservation for the user – due to the reduction of 

some auditing process and also some parameters in the original Blind 

scheme. The reduction in the auditing process and parameters can 

effectively refrain the TPA from learning about the user data. The major 

advantage of our new scheme lies in that, without incurring additional 

computation time, it improves the privacy leakage problem in related 



schemes and meanwhile maintains the required third-party public data 

auditing ability. More specifically, with some extra calculation, our 

different design is able to enhance user privacy preservation at no 

additional computation time cost (to be further demonstrated in the next 

section).  

 

4   Performance Evaluation 

4.1 The Zero Knowledge Proof 

The following zero knowledge proof will demonstrate our ability to 

preserve user privacy in the auditing process. Recall that, in our scheme, 

the TPA knows all parameters except the secret keys (p and x) and data 

block mi. To learn about data block mi, the TPA must work out on 

parameters σ and μ which are sent by the server and contain mi. It 

nevertheless cannot get mi from σ (𝜎 = ∏ (𝐻(𝑊𝑖)  ∗ 𝑢𝑚𝑖∗𝑝)𝑥∗𝜈𝑖
𝑖∈𝐼 ) when 

auditing a single block because, to audit a single block m1, it will receive 

proof message P = {σ, μ} from the server, where 

 𝜎 = (𝐻(𝑊1)  ∗ 𝑢𝑚1∗𝑝)𝑥∗𝜈1.  

To get m1, the TPA needs to guess on the random values of m1', x' and p' 

in the first place, calculate 

 𝜎′ = (𝐻(𝑊1) ∗ 𝑢𝑚1′∗𝑝′
)

𝑥′∗𝜈1
= 𝐻(𝑊1)𝑥′∗𝜈1  ∗ 𝑢𝑚1′∗𝑝′∗𝑥′∗𝜈1 

and then compare if σ = σ'. If σ = σ', the TPA will take the guessed value 

of m1' as the true value of m1. The problem is, even if σ = σ', the correct 

m1 will not necessarily equal the guessed m1' – because there are 

obviously more than one set of (m1', x', p') which makes σ = σ'. That is to 



say, even if the TPA makes out the values of m1', x' and p' which lead to σ 

= σ', it may not get the true value of m1.  

For similar reasons, the TPA can neither use μ (𝜇 = 𝑝 ∗ ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 ) 

to learn about mi when auditing a single block. When the TPA is to audit 

a single block m1, it will receive 𝜇 = 𝑝 ∗ 𝑚1 ∗ 𝜈1 from the server. To get 

m1, it must guess on the random values of m1' and p', calculate 𝜇′ =

𝑝′ ∗ 𝑚1′ ∗ 𝜈1 and then compare if μ = μ'. If μ = μ', it will take the guessed 

value of m1' as the true value of m1. But when multiple (m1', p') sets make 

μ = μ' (as in the above case of σ = σ'), the guessed m1' may not be the 

correct m1. Obviously, if the TPA fails to get mi when auditing a single 

data block, it will not get mi when auditing multiple data blocks because 

– when asking to audit multiple data blocks, it will confront σ and μ whose 

values are respectively the product and sum of the multiple blocks.  

4.2 The Computation Time 

To attain advanced performance evaluation, we carry out extended 

simulation runs to collect the required computation time in PoR, Blind 

and our new scheme (Ours) for comparisons. We set up three entities to 

represent the TPA, user and server by virtual machines and use the 

Pairing-Based Cryptography (PBC) library [13] and C programming 

language as the tools. The main purpose is to exhibit we attain the 

performance gain in user privacy preservation (i.e., attain better user 

privacy protection) at no additional cost of computation time in 

comparison to the other target schemes.  

(1) The User Computation Time    

Figure 1 depicts the user computation time for the three schemes. The 

user computation time indicates the time required for the user setup phase 



which includes key generation and signature generation steps. Consider 

the fact that different data sizes involve different user computation time, 

we hence divide the overall user computation time by the number of data 

blocks to get UCTPB (user computation time per block) in milliseconds 

(ms). In Figure 1, c is the number of data blocks the TPA is to audit (we 

set c = 300 and 460, as in [2]).  

Figure 1 depicts quite similar UCTPB values for all three schemes. In 

𝜎𝑖 = (𝐻(𝑊𝑖)  ∗ 𝑢𝑝∗𝑚𝑖)𝑥 – the formula to calculate metadata σi for each 

data block mi, we find our scheme takes one more power computation for 

each data block because we need to calculate up*mi, whereas PoR and 

Blind each calculate only umi. To reduce the increase in computation time, 

we act by conducting the multiplication p*mi first because it takes only 

another multiplication computation, instead of power computation, for 

each data block. The act, as Figure 1 shows, substantially reduces the user 

computation time for our scheme. 

 

 

Figure 1. The user computation time for various schemes. 



 

(2) The Server Computation Time   

Figure 2 gives the server computation time for the three schemes. The 

server computation time starts when the server receives a challenge 

message from the TPA and ends when it completes calculating the proof 

message. Figure 2 again shows similar results for all schemes, indicating 

that our new scheme yields better performance in privacy protection than 

PoR and Blind – without additional cost in server computation time. Note 

that we do not consume additional server computation time mainly 

because we take no more computations than the Blind scheme to blind 

each data block and need only one extra multiplication p ( 𝜇 = 𝑝 ∗

∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 ) in contrast to the PoR scheme (𝜇 = ∑ 𝑚𝑖 ∗ 𝜈𝑖𝑖∈𝐼 ). 

  

(3) The TPA Computation Time 

    

 

Figure 2. The server computation time for various schemes. 



Table 1. The comparison among the PoR scheme, the Blind scheme  

and our scheme 

  The PoR scheme [1]

  
The Blind scheme 

[2] 

Our scheme 

Basics PoR PoR PoR 

Phases User Setup: KeyGen 

and SigGen  

TPA Auditing: 

ProofGen and 

VerifyProof 

User Setup: KeyGen 

and SigGen  

(same as PoR) 

TPA Auditing: 

ProofGen and 

VerifyProof  

(generate r) 

User Setup: KeyGen 

and SigGen  

(generate p) 

TPA Auditing: 

ProofGen and 

VerifyProof 

Enhancing 

privacy  

no generate a random 

parameter r to blind 

parameter μ during 

TPA auditing 

generate a random 

parameter p in the early 

stage of key generation, 

use the parameter to 

blind metadata σi which 

contains data block mi 

and then send p to the 

server 

Effective-

ness 

induce possible user 

privacy leakage 

because the server 

needs to send the proof 

message P (= {σ, μ}) 

along with parameter μ 

to the TPA 

confront possible user 

privacy leakage 

because the TPA can 

still find ways to fetch 

any data blocks 

reduce some auditing 

process and some 

parameters in the Blind 

scheme to effectively 

refrain the TPA from 

learning about the user 

data 

User 

privacy 

leakage 

yes yes no 

Zero 

knowledge 

proved 

no no yes 

Extra user 

computa-

tion 

no no no 

Extra 

server 

computa-

tion 

no no no 

Extra TPA 

computa-

tion 

no yes (one extra 

multiplication (*R) 

and two extra power-

of-γ computations) 

no 

 



The TPA auditing process listed in previous sections for the three 

schemes shows that PoR and our new scheme take the same TPA 

computation time because both conduct totally identical TPA 

computation in the auditing process. Among the schemes, Blind 

consumes the most TPA computation time due to its application of one 

extra multiplication (*R) and two extra power-of-γcomputations. 

A comparison table is listed in Table 1 to help recap the features of 

the three target schemes. 

4.3 Other Disscusions 

A number of more recent approaches, e.g., [9,12,14-16], have been 

introduced in the literature to enhance the third-party auditing process. 

Among the schemes, some [9] employs the key-exposure resilience 

technique to update the secret keys in order to reduce the damage of 

client key exposure during cloud storage auditing. Some [14] attempts to 

ensure the security of stored data by decomposing the whole encrypted 

file into different pieces and storing the pieces in randomly chosen cloud 

servers – to keep key authorities from decrypting the complete file. The 

design improves not only security but also the processing burden of a 

single server. The other schemes include introducing a proxy into the 

traditional public auditing system to release data owners out of online 

burden [12] or to audit the shared data in cloud by means of the group 

signature [15] or secret sharing [16]. We believe that, with any of these 

approaches brought to work with our new scheme, we can turn over 

stronger performance, in addition to proper user privacy preservation – 

which is our major goal in this investigation. 

 



 

5   Conclusions 

In cloud storage, the third-party auditor (TPA) performs public 

auditing and data integrity check to help maintain the integrity of 

outsourced data stored in the cloud server. During the auditing process, it 

is obvious that the TPA should learn nothing about the user to avoid 

possible user privacy leakage. Seeing that the practice of existing auditing 

schemes cannot fully keep the TPA from fetching users’ private data, we 

hence introduce an efficient new auditing scheme in this paper to secure 

better user privacy protection. Different from previous schemes, our new 

scheme will keep the TPA from learning user data blocks in an earlier 

stage. Our basic practice is to generate a random parameter p in the key 

generation stage, use parameter p to blind metadata σi which contains data 

block mi and then send p to the server. When the server receives a 

challenge message from the TPA asking for data auditing, it will calculate 

the proof by σi, mi and p, and return the result to the TPA. Receiving the 

proof message from the server, the TPA then starts the auditing process 

by both the proof and public key pk (generated by the user) to check data 

integrity. Such a practice can avoid potential user privacy leakage as 

much as possible to uplift privacy preservation. Extensive simulation has 

been carried out to check the privacy preserving performance of different 

auditing schemes, including the PoR scheme, the Blind scheme and our 

new scheme. Our new scheme, as obtained results exhibit, yields better 

privacy protection than the other two schemes at no more computation 

time cost for all involved entities – the user, the server and the TPA. 
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