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Abstract 


Partition problems of graphs are optimization problems about partitions of the 

vertex set V (G) or the edge set E(G) of a graph G under some additional restrictions. 

We begin this thesis by introducing some partition problems, basic definitions and 

notation in graph theory. 

We study first-fit partitions and the first-fit chromatic numbers of graphs in 

Chapter 2. Given a family F of graphs satisfying that F is closed under taking 

induced subgraphs and e(G) < dn(G) for any graph G E F, where d is an arbitrary 

positive real number, we give an upper bound for the first-fit chromatic number 

of any graph in F. This result applies to d-degenerate graphs, planar graphs, and 

outerplanar graphs. 

A vertex-weighted graph (G,c) is a graph G with a positive weight c(v) on each 

vertex v in G. In Chapter 3, we study the max-coloring problem of a vertex-weighted 

graph (G, c), which attempts to partition V (G) into independent sets such that the 

sum of the maximum weight in each independent set is minimum. This is a weighted 

version of the usual vertex coloring problem of a graph. We give an upper bound 

for the number of sets needed in an optimal vertex partition of a vertex-weighted r­

partite graph. We then derive the Nordhaus-Gaddum inequality for vertex-weighted 

graphs. We also consider the properties of the perfection on vertex-weighted graphs. 

A balanced coloring of a graph G is a partition {R, B, U} ofV(G) with IRI = IBI, 

where R, B and U stand for the sets of red, blue and uncolored vertices in G, 

respectively. For a graph G with a balanced coloring {R, B, U}, an (R, B)-balanced 

decomposition is a partition P of V(G) such that the induced subgraph G[S] is 

connected and 18 n RI 18 n BI for any 8 in P. The balanced decomposition 

number f(G) of a graph G is the minimum integer l such that for any balanced 

coloring (R, B) of G there is an (R, B)-balanced decomposition P with 181 < l 

for 8 E P. In Chapter 4, we give a shorter proof of a known result that a graph 

G has balanced decomposition number 3 if and only if G is Lnc;) J-connected and 
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G is not a complete graph. We then extend the definition of a balanced l'AI,'\rlnl 

using two colors to k colors, and call the corresponding parameter the UGW.Od.l•.,.g 

k-decomposition number. We compute the balanced k-decomposition numbers 

trees and complete multipartite graphs. 

A parity edge-coloring of a graph G is an edge-coloring of G such that any 

of positive length uses some color an odd number of times. A strong parity 

coloring of a graph G is an edge-coloring of G such that any open walk uses 

color an odd number of times. The parity (strong parity) edge-chromatic number 

a graph G is the minimum number of colors used in a parity (strong parity) 

coloring of G. In Chapter 5, we prove that, for 3 ~ m < n and n =0, -1, -2 ( 

2flgml), the (strong) parity edge-chromatic number of the complete bipartite 

Km,n is m 0 n, the Hopf-Stiefel function, which is the least integer l such that 

is even for each k with l - n < k < m. We also consider the parity and the 

parity edge-chromatic numbers of the products of graphs. 
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