SYNTHESIS AND CHARACTERIZATION OF MONONUCLEAR AND POLYNUCLEAR METAL-FULLERENE COMPLEXES

Hsiu-Fu Hsu, Ph. D. School of Chemical Sciences University of Illinois at Urbana-Champaign, 1997 John R. Shapley, Advisor

The fullerene complexes $M(CO)_3(dppe)(\eta^2$ -fullerene) (fullerene = C_{60} , M = Mo and W; fullerene = C_{70} , M = Mo) as well as an analogous complex of dimethyl fumarate (dmf), $W(CO)_3(dppe)(\eta^2$ -dmf), have been prepared by photolysis of $M(CO)_4(dppe)$ and the respective olefin. The local coordination geometries prove to be very similar for all four compounds as observed in their single crystal X-ray structures, but the C_{60} complexes display significant secondary interactions between the fullerene moiety and the phenyl groups of the diphosphine ligand. The isomer distribution of the double addition C_{60} adducts have been probed by ³¹P NMR spectroscopy. For the compound $Mo(CO)_3(dppe)(\eta^2-C_{70})$, two isomers (ratio 4:1) are indicated by its ³¹P NMR spectrum.

The reaction of Ru₃(CO)₁₂ with C₆₀ gave a novel hexahapto C₆₀ compound, Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆₀). The molecular structure of Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆₀) shows that the Ru₃ triangle is positioned centrally over a ring of six carbons in the fullerene framework and the two planes are essentially parallel. The carbon-carbon bonds in the sixmembered ring alternate in length and the Ru-C distances also show a short-long pattern at each metal center, which reflects a slight twist about the idealized threefold axis linking the Ru₃ triangle and the C₆ ring. The structural features seen for Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆₀) are closely comparable to those reported for the benzene complex Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆H₆). The stability of Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆₀) toward temperature up to 136°C and CO pressures up to 4 atm indicates strong interaction between the Ru₃ triangle and the C₆ ring. However, the carbonyl ligands can be replaced by triphenylphosphine to give Ru₃(CO)_{9-n}(PPh₃)_n(μ_3 - η^2 , η^2 , η^2 -C₆₀) (n = 1, 2) and the C₆₀-Ru₃ cluster interaction is interrupted by extended heating of these phosphine derivatives, which leads to the formation of mononuclear derivatives. Detailed ³¹P and ¹³C NMR studies on Ru₃(CO)_{9-n}(PPh₃)_n(μ_3 - η^2 , η^2 -C₆₀) indicate localized ligand rotation at each metal center. The multiple addition adducts, {Ru₃(CO)₉}_n(μ_3 - η^2 , η^2 , η^2 -C₆₀) (n = 2, 3, 4), were obtained by raising the ratio of Ru₃(CO)₁₂ to C₆₀. One of two isomers of the 3:1 adduct has been structurally defined. The availability of further reacting sites seems to be the dominant factor for the isomer distribution with this special bonding mode.

The first hexahapto complex of C_{70} , $Ru_3(CO)_9(\mu_3-\eta^2, \eta^2, \eta^2-C_{70})$, has been prepared and structurally defined. The Ru_3 triangle is bonded to a six-membered ring next to one of the poles of C_{70} . In addition, the expected three isomers of the double substitution product, $\{Ru_3(CO)_9\}_2(\mu_3-\eta^2, \eta^2, \eta^2-C_{70})$, were also obtained and separated, and the structure of one isomer has been determined. The two Ru_3 units are each bonded to six-membered rings but adjacent to opposite poles of the ellipsoidal C_{70} unit. The phosphine derivatives of $Ru_3(CO)_9(\mu_3-\eta^2, \eta^2, \eta^2-C_{70})$ were prepared and studied by ³¹P and ¹³C NMR spectroscopy. For the monophosphine derivative, $Ru_3(CO)_8(PPh_3)(\mu_3-\eta^2, \eta^2, \eta^2-C_{70})$, two isomers are observed in the ³¹P{¹H} NMR spectrum at room temperature and no evidence for rotation of C_{70} versus the Ru_3 triangle is observed up to 60°C. However, in the parent compound, $Ru_3(CO)_9(\mu_3-\eta^2, \eta^2, \eta^2-C_{70})$, the two carbonyl signals due to axial and equatorial carbonyl ligands coalesce at 95°C, which can be attributed possibly to rotation or to a scrambling process equilibrating all the carbonyl ligands.

The reaction of Ru₆C(CO)₁₇ with C₆₀ followed by carbonyl substitution with bis(diphenylphosphino)methane gave Ru₆C(CO)₁₂(dppm)(μ_3 - η^2 , η^2 , η^2 -C₆₀), in which the C₆₀ ligand occupies one face of the octahedral Ru₆ unit. The dppm ligand bridges two Ru atoms not bonded to C₆₀. A related arene-Ru₆C compound, Ru₆C(CO)₁₃{PPh₂(μ - η^6 -C₆H₆)}, was obtained by thermolysis of Ru₆C(CO)₁₆PPh₃. The tendency of the Ru₆C framework to form arene complexes is extended to include a coordinated triphenylphosphine moiety, evidenced by (reversible) coordination of a phenyl ring to an adjacent ruthenium center in the cluster unit.

;