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Optimal Design for Accelerated-Stress Acceptance
Test Based on Wiener Process
Chih-Chun Tsai, Chien-Tai Lin, and Narayanaswamy Balakrishnan

Abstract—Acceptance testing is widely used to assess whether a
product meets the expectations of customers. Yet, traditional ac-
ceptance tests based on time-to-failure data will not be practical be-
cause today's highly reliable products may take a long time to fail.
It may be good in this case to base a test on a suitable quality char-
acteristic (QC) whose degradation over time is related to the relia-
bility of the product. Motivated by resistor data, we first propose a
degradation model to describe the degradation paths of the resis-
tors. Next, we present an accelerated-stress acceptance test to re-
duce the acceptance testing time, and then derive the optimal accel-
erated-stress acceptance testing time for a product, and the proba-
bility of acceptance of the batch. A model incorporating cost is also
used to determine the optimal design for an accelerated-stress ac-
ceptance experiment, and a motivating example is then presented
to illustrate the proposed procedure. Finally, we examine the per-
formance of the estimators, and the effect of misspecification of the
parameters on the optimal test plan through a Monte Carlo simu-
lation study, and a detailed sensitivity analysis.
Index Terms—Cost function, optimal accelerated-stress accep-

tance testing time, optimal test plan, parameter misspecification,
quality characteristic, sensitivity analysis.

ACRONYMS AND ABBREVIATIONS

QC quality characteristic
MLE maximum likelihood estimate
BAN best asymptotically normal
CI confidence interval

NOTATION

measured resistance of the -th tested unit at time

measured resistance at time under stress for
, 1

diffusion coefficient for , 1
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relative changes in the resistance of the resistors
under stress at time
standard Brownian motion
optimal accelerated-stress acceptance testing time

TC total cost of conducting an accelerated-stress
acceptance test
unit cost of operation
unit cost of measurement
unit cost of tested coupon

AVar asymptotic variance
vector of unknown model parameters
test plan
optimal test plan
Fisher information matrix

I. INTRODUCTION

A CCEPTANCE testing is an important inspection pro-
cedure in reliability engineering and manufacturing. It

is usually conducted for determining whether some pertinent
characteristic of the unit meets the specification requirements of
customers. Traditionally, this type of testing, including chemical
tests, physical tests, or performance tests, has been done by
recording the time of failure of each unit (see Gates & Fearey
[4], Whitney [32], Mogg [13], Blumenthal [2], Vangel [27],
and Ma & Robinson [10]). However, as modern production
technology becomes increasingly sophisticated, manufactured
products such as circuit boards, semiconductors, automobiles,
and aerospace products are created with high quality and relia-
bility; consequently, it takes a long time tomonitor failures and to
conduct inspection procedures for decisionmaking.Usually, it is
neither practical nor feasible to carry out such a test. In this situa-
tion, a suitable alternative is to base themethod on data collected
from degradation tests, which are especially useful in scenarios
wherein there is a quality characteristic (QC) whose degradation
over time is closely associatedwith the lifetimeof theproduction.
The use of data from degradation tests has been studied ex-

tensively as an alternative to traditional life tests by a number
of authors including Nelson [14], Meeker & Escobar [12], Bag-
donavicius&Nikulin [1], Lawless [6], Gebraeel& Pan [5], Peng
& Tseng [17], Yang [34], [36], Wang & Pham [29], and Peng
et al. [18]. These references provide many examples from a
wide range of applied areas. Most degradation data analysis and
practices are based on the assumption of aWiener process for the
degradation paths of the products. Park & Padgett [15], and Liao
& Elsayed [8] studied the use of accelerated degradation data in
modelling and prediction through a Wiener process. Tang & Su
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[21] discussed the estimation of the mean lifetime based on the
intermediate degradation data from a Wiener process. Peng &
Tseng [16] investigated the misspecification analysis of linear
degradation models by incorporating the random effects in the
drift coefficient, and measurement errors in a Wiener process.
Recent developments and applications of Wiener degradation
processes include those by Wang et al. [28], Tseng et al. [25],
Si et al. [20], Tsai et al. [22], Wei et al. [30], and Ye et al. [38].
However, the design of an acceptance test in this framework
has not been addressed yet.
A good degradation test plan based on an optimal choice

of total sample size, inspection frequency, and total number
of measurements can be used to achieve a specified degree of
accuracy required for an efficient estimation of themodel param-
eters. Boulanger & Escobar [3] described a method for planning
accelerated degradation tests based on a nonlinear model that in-
corporates a sigmoidal growth curve.Yu&Tseng [41]proposeda
quasi-linearmodel to address the associated optimal degradation
design. Wu & Chang [33] utilized a nonlinear mixed integer
programming technique to obtain an optimal degradation design.
Marseguerra et al. [11] illustrated the use of multi-objective ge-
netic algorithms for thedesignofoptimaldegradation tests.Some
relevant literature and other approaches for optimal degradation
designs can be found in the works of Yu & Chiao [40], Yu [39],
Tseng et al. [26], Rathod et al. [19], Tsai et al. [23], [24], Ye et al.
[37], and Yang [35]; but, until now, optimal degradation designs
for acceptance tests have not been developed in the literature.
In this article, motivated by resistor data, a degradationmodel

is proposed to describe the degradation paths of the resistors.
Next, to shorten the duration of an acceptance test based on cost
and time considerations, an accelerated-stress acceptance test is
proposed. Then, an intuitive rule is used to determine the op-
timal accelerated-stress acceptance testing time, and the proba-
bility of acceptance of the batch is derived. We discuss the op-
timal design problem for the accelerated-stress acceptance ex-
periment based on a model that incorporates the cost. Finally,
a sensitivity analysis is conducted for examining the effects of
misspecification of the parameters on the optimal test plan, and
a simulation study is carried out for assessing the performance
of the estimators of the model parameters as well.
The rest of this paper is organized as follows. Section II gives

a motivating example, and Section III describes the formulation
of the problem. Section IV presents the derivation of the optimal
accelerated-stress acceptance testing time and the probability of
acceptance of the batch, and discusses the corresponding optimal
design based on a cost model. Section V uses the motivating ex-
ample for illustrating the proposed method. The performance of
the estimators of themodel parameters, and the effect ofmisspec-
ification of the parameters on the optimal test plan, are evaluated
through a Monte Carlo simulation study, and a sensitivity anal-
ysis. Finally, some concluding remarks are made in Section VI,
and all the technical details are relegated to the Appendix.

II. MOTIVATING EXAMPLE

The motivation for this research is a real example provided
by a manufacturer of chip resistors in Taiwan. Chip resistors
are passive components which are commonly used to create and
maintain a safe level of current for many electrical products such

Fig. 1. Relative changes in the resistance of 60 resistors within 1000 hours.

as tablets, automobiles, and cell phones. When the resistance
of a chip resistor deviates seriously away from its initial value,
the performance of the device may be reduced significantly, and
may even result in its breakdown. Fig. 1 displays the relative
changes in the resistance of 60 resistors at 39 in a 1000-hour
acceptance test at a temperature of 70 .
Let , and denote the total number of test units, and mea-

surements under a prefixed temperature or stress ,
respectively. Also, let be the measured resistance of
the -th tested unit at time , where , and

. The commonly used policy demands that the
batches of resistors are accepted only if the relative changes in
resistance of the batch through the whole testing process under

are all less than 1%; that is,

However, the use of such an acceptance testing time (termina-
tion time being ) may be inefficient, or quite
expensive in terms of time and cost, or both. Therefore, three
practical decision problems arise naturally while developing an
efficient acceptance test for the resistors.
1) To shorten the acceptance testing time, one may consider

conducting an acceptance experiment at a higher tempera-
ture (say, ) to accelerate the chemical degra-
dation process. How can one determine the optimal accel-
erated-stress acceptance testing time (denoted by ) in
this accelerated test such that the performance of the rela-
tive changes in resistance under the new accelerated stress
level will be close to the one under the original stress

at time , as illustrated in Fig. 2?
2) In some applications, it is very important to evaluate the

performance of the products based on the probability of ac-
ceptance of the batch at time while conducting an ac-
celerated-stress acceptance experiment. For resistor data,
how do we find the probability of acceptance?

3) How do we carry out an optimal accelerated-stress ac-
ceptance test? In other words, how many resistors should
be taken for conducting an accelerated-stress acceptance
test? How do we determine an appropriate inspection fre-
quency? How many measurements should be made in one
inspection to collect the desired degradation data?
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Fig. 2. Illustration of the optimal accelerated-stress acceptance testing time
.

In the following section, we will formulate such an optimal
design problem for an accelerated-stress acceptance test.

III. FORMULATION OF THE PROBLEM
The plot in Fig. 1 shows that the degradation paths of the rel-

ative changes in the resistance of the resistors are exponentially
decreasing over time . Hence, the relative changes in the resis-
tance of the resistors under stress at time can be suitably
defined as

(1)
Using a natural-logarithm transformation, we have

(2)
where .
As shown in Fig. 2, we want to determine the optimal accel-

erated-stress acceptance testing time in the accelerated test
such that the relative changes in resistance under accelerated

stress are as close to the ones under the original stress at
time as possible. In general, if we wish to find an approxima-
tion of a distribution, we always look for tractable distributions
whose means and standard deviations are the same as the target
distribution, and then choose the one that performs best in the re-
quired criterion. Thus, a natural case in our situation would be to
compare the sum of the absolute difference of themean and stan-
dard deviation between the degradation paths and
for all , and find its minimum. However, in most real-life prob-
lems, the computation of this absolute-difference optimization
may not be a trivial issue. Hence, the use of the squared dif-
ference is proposed here; that is, the optimal accelerated-stress
acceptance testing time can be intuitively given by

(3)

where , and , respectively, are the mean,
and standard deviation of the degradation path at time
under stress for , 1.

It is seen that is a function of the unknown model param-
eters . In practice, these parameters
will all be unknown. Hence, to estimate efficiently, we pro-
pose to modify the earlier work on degradation test plans (see,
for instance, Tsai et al. [24]) to conduct an accelerated-stress
acceptance experiment for estimating within the specified
budgetary constraints as follows.
Suppose units are randomly selected for conducting an ac-

celerated-stress acceptance experiment, and the measurements
of each unit are made every units of time until time

, where is the number of measurements made under
stress , and is one unit of time. It is clear that the values of
the variables will affect the experimental cost as well
as the precision of the estimate of the optimal accelerated-stress
acceptance testing time. Let denote the total cost
of conducting an accelerated-stress acceptance experiment, and

be the estimate of the optimal accelerated-stress acceptance
testing time based on a test plan . Then, the typical
decision problem of interest can be formulated as follows.

(4)

where denotes the asymptotic variance of , and
is the total pre-fixed budget for conducting the accelerated-

stress acceptance experiment.
In the next section, we discuss the solution to the above stated

optimization problem.

IV. THE OPTIMAL TEST PLAN
To conduct an accelerated-stress acceptance test efficiently,

the procedure for solving the optimization problem in (4) con-
sists of three parts:
1) the derivation of the optimal accelerated-stress acceptance

testing time,
2) the computation of the asymptotic variance of the estimate

of the optimal accelerated-stress acceptance testing time,
and

3) the total cost of the accelerated-stress acceptance experi-
ment.

A. Expression of
From (2), see that

(5)

and

(6)

Upon substituting (5) and (6) into (3), the optimal accelerated-
stress acceptance testing time can be obtained byminimizing
the function

(7)
The detailed expressions of for four different situations are
presented in the following theorem, and their proofs are pre-
sented in the Appendix.
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Theorem 1: Let the degradation models of the resistors under
stress , , 1, be as defined in (1). Further, let

(8)

(9)

and

(10)

Then, based on a decision rule for in (3), we have the fol-
lowing.
(i) If , then

(11)

(ii) If , and , then .
(iii) If , and , then

, where

(12)

and

(13)

(iv) If , then , where

(14)

(15)

and

(16)
Furthermore, we obtain the probability of acceptance of the

batch at time in the following proposition.
Proposition 1: Let , and respectively be the pre-fixed

upper, and lower limits for the acceptance of the batch in an ac-
celerated-stress acceptance test. Then, the probability of accep-
tance of the batch at time is given by

(17)

where is the cumulative distribution function of a standard
normal random variable.
The proof of this result is presented in the Appendix.

B. Computation of
Let denote the sample path of the -th tested unit at

time under stress , for , and when
, 1. Let ,

with . Then, from (2), and the -independent increment
property of the Wiener process, has a normal distribution
as

Hence, the log-likelihood function for the degradation paths of
the resistors under stress and is given by

(18)

where . By maximizing
(18), the maximum likelihood estimator (MLE)

of can be obtained by solving the
following likelihood equations.

(19)

(20)

(21)

where for , 1. Then, by plugging into in
Theorem 1, and applying the best asymptotic normality (BAN)
property of the MLE, the asymptotic variance of is readily
obtained to be

(22)

where is the gradient of , is the transpose
of , and is the Fisher information matrix. Relevant
details are presented in the Appendix.

C. Cost Function
The total cost of conducting an accelerated-stress acceptance

test, , includes three different costs:
1) the cost of conducting an experiment ,
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2) the cost of measurements , and
3) the cost of tested devices .

We, therefore, have the total cost of conducting an accelerated-
stress acceptance experiment to be

(23)

D. Optimization Problem
Under this setting, the required optimization problem is as

follows.

(24)

(25)

where , , and
. Note that it can be easily checked that the deter-

minant of the Fisher information matrix in (22) is zero
whenever , and for this reason the measurement number
has to be at least two.
Due to the complexity of the objective function, an analytic

expression for the solution of this optimization problem seems
impossible. However, with the simplicity in the structure of the
constraint, and the integer restriction on these decision vari-
ables, the optimal solution can be easily de-
termined by a complete enumeration method in a finite number
of steps as described below in nine steps.
Step 1) Set , where

is the floor of (the largest integer that is less
than ), and is the largest possible number for

when and .
Step 2) Set .
Step 3) Set , where

is the largest possible number for when
is fixed, and .

Step 4) Set .
Step 5) Find such that .
Step 6) Calculate by .
Step 7) Set , and repeat Steps 5 and 6 until

.
Step 8) Set , and repeat Steps 3 through 7 until

.
Step 9) Among all possible choices of , for

, choose that particular solution
which has smallest as optimal solution

.

V. MOTIVATING EXAMPLE REVISITED
In this section, we illustrate the proposed optimal accelerated-

stress acceptance test with the resistor data introduced earlier in
Section II. First, a pilot study under accelerated stress

was conducted, and the relative changes in resistance
under stress are shown in Fig. 3. From (19), (20), and (21),
we obtain the MLE of as

(26)

Fig. 3. Relative changes in resistance under the accelerated stress .

Upon substituting into (10), we have . Then,
by case (i) of Theorem 1, and (22), we get the estimated optimal
accelerated-stress acceptance testing time to be 30.27 hours,
and the corresponding estimated asymptotic variance
as 54.79, which yields a 95% normal-approximate confidence
interval (CI) for as

It is clear that the acceptance testing time under the accel-
erated test is considerably more efficient than the traditional
acceptance testing time (with corresponding efficiency being

). Furthermore, from Propo-
sition 1 with commonly used values of and

, the estimated probability of acceptance of the
batch can be obtained as

From (22), it is known that is a function of
when the test plan is given. Hence, for determining an optimal
accelerated-stress acceptance test, we need information on the
parameter vector . In what follows, we take the MLE of in
(26) as the true model parameter, and then describe the construc-
tion of the optimal design for the resistor data.
Suppose the cost factors , , and are

and the unit time is 24 hours (i.e., one day). Then, under var-
ious choices of budget specification , the optimal test plans
for the accelerated-stress acceptance test can be obtained by
using the algorithm described in Section IV-D, and the results
so obtained are presented in Table I.
1) Optimal Test Plan

For example, when the budget , the optimal
test plan turns out to be . In
other words, the optimal sample size is 30, the optimal
measurement frequency is , and the
optimal measurement number is 20. Thus, the total test



608 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 2, JUNE 2015

TABLE I
OPTIMAL TEST PLANS UNDER VARIOUS CHOICES

OF BUDGET SPECIFICATION

time for this accelerated-stress acceptance experiment is
. Under such a test plan, the

total cost is 1990.00, and the corresponding asymptotic
variance of the estimated optimal accelerated-stress accep-
tance testing time is 82.03.

2) Sensitivity Analysis
In practice, the estimated parameter

would depart from the true
parameter . Suppose

denote the errors in the specification of
the parameters , , , , , and , respectively.
We now use the design matrix for sensitivity
analysis (which can be easily generated by JMP statistical
software) to examine the effects of misspecification of
these parameters on the optimal test plan. Here, is the
number of runs (used in the design), is the number of
levels of each factor (or parameter), and is the number of
factors (or parameters). Under the same cost configuration

, the optimal
test plans for various choices of

are presented in Table II in the form of an design
matrix. From these results, we observe that the optimal
test plan is quite robust to moderate departures
from the assumed value of . Note that the optimal value

is quite insensitive to the model parameter . However,
the optimal sample size and the measurement number

are somewhat sensitive. Hence, for designing a good
accelerated-stress acceptance plan, we need a precise
parameter specification.

3) Simulation Study
The above results are based on the asymptotic normality of
the MLE. In this section, a Monte Carlo simulation study
is performed to show that the asymptotic results can be
closely approximated by those obtained from simulations.
Corresponding to the resistor data presented earlier, the
true parameter settings of the degradation model of the
resistors under stress levels and were assumed as
in (26), and 1000 sets of degradation data were generated.
Table III presents the true and simulated values of the
parameters, and the optimal accelerated-stress acceptance
testing time in the model. The corresponding asymp-
totic and simulated variances of the estimated parameters
and the optimal accelerated-stress acceptance testing time
are also given inside the parentheses. We observe that
all the simulated values and the variances of parameters
are quite close to the corresponding true values and their
asymptotic variances.

TABLE II
OPTIMAL TEST PLANS UNDER VARIOUS CHOICES OF THE PARAMETERS

TABLE III
RESULTS OF A MONTE CARLO SIMULATION STUDY FOR THE ESTIMATES OF

THE MODEL PARAMETERS AND

VI. CONCLUDING REMARKS

An acceptance test is an extremely important stage to ensure
products meet the customer's requirements. Note, however, that
traditional acceptance tests based on time-to-failure data are no
longer practical for highly reliable products. For this situation,
motivated by resistor data, an accelerated-stress acceptance test
based on aWiener degradation model has been proposed here to
shorten the acceptance testing time. As illustrated in Section V,
the acceptance testing time under the accelerated test is consid-
erably better than the traditional acceptance testing time.
Next, by minimizing the asymptotic variance of the estimated

optimal accelerated-stress acceptance testing time subject to the
total experimental cost not exceeding a pre-specified budget, we
have determined the optimal test plan, including the total sample
size, measurement frequency, and the number of measurements,
for an accelerated-stress acceptance test. The sensitivity anal-
ysis carried out shows that the optimal test plan is quite robust. A
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simulation study reveals that all the estimated parameter values
and the variances of the estimates are quite close to the corre-
sponding true values and their asymptotic variances.
Some possible extensions of this work can be made in the

following directions.
(i) The degradation model for the resistor data in (2) can be

extended to higher levels of stress (temperature),
. This condition is also

called an accelerated-stress acceptance test with levels
of constant stress. In such a case, the (Arrhenius) relation-
ship between accelerating variable and decay rate

of the resistors can be incorporated into the degra-
dation model. However, the simple decision rule in (3) is
no longer suitable for handling the higher-level problem.
So, more appropriate decision rules for optimal acceler-
ated-stress acceptance testing times under different
stresses , , need to be suggested in ad-
vance.

(ii) There may exist other extra sources of variability in the re-
sistors. A random-effect degradation model that describes
such product-to-product variability might be able to make
the proposed model applicable to a much larger range of
real-life data sets (Lu & Meeker, [9]).

(iii) Sometimes, degradation paths of the products may be
compounded and contaminated by measurement errors.
Under such a situation, it may be more appropriate to
fit a general Wiener degradation model with measure-
ment errors (Whitmore, [31]) for the resistor data. An-
other area would be to extend the proposed method based
on a gamma degradation process to handle fatigue data
with a monotone-increasing pattern (Lawless & Crowder,
[7]).

(iv) For some poor-quality resistors in the batch, their rela-
tive changes in resistance would be decayed or diffused
much faster than would the good-quality ones. For such
poor-quality batches, the probability of acceptance is
the consumer's risk, and the probability of rejection of a
good-quality batch is the producer's risk. It is important to
balance these two risks by incorporating their respective
costs in the proposed decision model. Methods like those
described by Tsai et al. [23] could be developed in this
context.

These problems are of great interest, and we hope to consider
these issues for our future research.

APPENDIX

Proof of Theorem 1:
Proof: Taking derivative of (7) with respect to , we have

which, upon dividing by and taking squares on both
sides, yields a cubic equation as

(27)

where

(28)

(29)

(30)

and

(31)

It is well known that by the intermediate value theorem, every
cubic equation with real coefficients has at least one real solu-
tion, which can be determined through the discriminant given
by

(32)

Then, upon substituting the expressions in (28)–(31) into (32),
we obtain the explicit expression of in (10). Based on the
values of and , four types of roots for can
be obtained as detailed below.
(i) if , then the cubic equation in (27) has only one real

root as

where

(33)

and

(34)

Thus, upon substituting the expressions (28) through (31)
into (33) and (34), we obtain the corresponding optimal
accelerated-stress acceptance testing time, in this case as

where , and are as expressed in (8), and (9), respec-
tively.

(ii) If , and , then the cubic equation in
(27) has three equal real roots as

(35)

Upon substituting the expressions in (28) through (30)
into , we obtain . Thus,
the optimal accelerated-stress acceptance testing time in
such a case is

where is as given in (8).
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(iii) if , and , then the cubic equation in
(27) has two equal real roots

(36)

and one simple root

(37)

Thus, upon substituting the expressions in (28)through
(31) into (36) and (37), we obtain the optimal accelerated-
stress acceptance testing time in this case as

where and are as given in (12) and (13).
(iv) if , then the cubic equation in (27) has three distinct

real roots as

and

where , and are as defined in (33), and (34), respec-
tively.
In this case, we obtain the optimal accelerated-stress ac-
ceptance testing time as

where , , and are as given in (14), (15), and (16),
respectively.

Detailed Expressions of and in (22):
Proof: We have

From the data analysis in Section V, the discriminant in (10) is
greater than 0. Then, by part (i) of Theorem 1, and logarithmic
differentiation, the elements of the gradient in such a
case are given by

for , 1, where we see the equation at the bottom of the
next page.
Finally, we obtain the Fisher information matrix as

where is a 3 3 matrix of zeros; and, for , 1,

where
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Proof of Proposition 1:
Proof: From (1) and (2), see that the probability of accep-

tance of the batch at fixed time under the accelerated-stress
acceptance experiment is given by

Then, from (5) and (6), we have

Thus, the required result follows.
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