
Applying Loss-rate Driven Network Coding to 
Transmission Control Protocol 

 

Yihjia Tsai 
Dept. of Computer Science and Information Engineering 

Tamkang University 
Taipei, Taiwan 

eplusplus@gmail.com 

Chaoyuan Chiang 
Dept. of Computer Science and Information Engineering 

Tamkang University 
Taipei, Taiwan 

cory.scorpio@gmail.com
 
 

Abstract—Transmission control is an important issue in the 
Internet or other computer networks today. The retransmission 
scheme in TCP cannot have the best throughput in the network 
scenarios with more wireless links or complicated topologies. 
Some related works proposed the solution by network coding. 
Network coding is suitable for generate the redundant data for 
error correction. In this paper, we discussed such solutions. Then 
we proposed the loss-rate driven coding, LRC, for transmission 
control. The proposed mechanism can minimize the coding 
operations. Applying LRC to TCP will have lower power 
consumption and lower computing resource requirement. 
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I.  INTRODUCTION 
Transport layer is an important part in the protocol stack of 

Internet and other modern computer networks today. The 
Transmission Control Protocol, TCP, is one of the transport 
layer protocols. TCP provides reliable communication for 
upper layer applications by the acknowledgment mechanism. 
With acknowledgment mechanism, TCP can detect the 
segment loss and sense the network condition. Once a segment 
loosed or timed-out, it represents the network congestion 
occurred. TCP would control the transmission rate by adjusting 
the congestion window size to avoid network congestion. 

TCP was developed for wired networks at beginning. 
Wired networks are simple, if the segment loss became often, 
the network is in congestion. TCP will reduce the transmission 
rate once congestion occurs. In the modern network scenario, 
more wireless links, more carrier types, more complicated and 
larger topologies, there are more reasons caused segment loss 
or time-out, such as interference, fading, or temporary fault in 
the intermediate network device. The retransmission and 
congestion window adjustment policy of TCP may decrease the 
efficiency of transmission. In other words, TCP cannot reach 
the optimal usage of network throughput in some situations. 
For this issue, there exist some researches using network 
coding to improve the usage of network throughput in TCP 
transmission. 

Network coding was first proposed in 2000 [1], which 
provides solution for optimizing network throughput in 
wireless networks, such as [5]. The major idea is combining 
data by XOR operations in broadcasting networks to minimize 
the amount of transmissions. A branch of network coding is the 

linear network coding [10]. Linear network coding is often 
applied in guaranteeing the fairness of peer-to-peer content 
distribution [2] or generating redundant data for error-
correction [14]. The most interesting part of linear network 
coding is that it can distribute a large content into n pieces 
equally in logical. For peer-to-peer content distribution, each 
peer can get the original content by decoding the n received 
coded pieces. Consider the transmission in lossy networks, if 
sender divides the data into blocks and transmit in linear 
coding continuously, receiver can decode and get the original 
data after receiving any n blocks. The receiver doesn’t have to 
care the order of blocks. Some researches applied the idea 
above to TCP with lossy networks. We discussed those works 
in next section below. 

Linear network coding seems a good solution. However, 
coding takes system resources on the devices. The 
implementations of linear network coding use the algebraic 
operations on Galois Field. The operations in Galois Field are 
performing by bitwise XOR or bit-shift operations. The 
decoding procedure is more complicated than encoding 
procedure. Minimizing the coded data and reducing the 
decoding works will have better computing efficiency for the 
devices. In other words, that would be more friendly to 
embedded devices with limited system resources. 

In this paper, we proposed the idea of loss-rate driven 
coding. We designed a transmission control mechanism, which 
use network coding as redundancy. The amount of redundancy 
is related to loss-rare sensed. In the second section, we 
reviewed the TCP mechanism and related works. Then, we 
proposed our loss-rate driven coding idea in third section, 
followed by the performance evaluation and conclusions. 

II. TCP MECHANISM REVIEW 

A. Congestion Control 
The TCP data unit called segment, the data from upper 

layer would be divided into segments and transmit. Since the 
bandwidth of network links and the buffer size of network 
devices are limited, the packet would be dropped if the data 
comes faster than the bandwidth of network link. Once packets 
have been dropped in the lower layer, the transport layer 
segments would be lost or broken. TCP introduced the 
acknowledgment mechanism. Sender transmits the segment 
with sequence number and header checksum. Receiver checks 



the received segment. If the segment is received correctly, 
receiver sends an acknowledgement, ACK, to inform the 
sender. The ACK contains the sequence number of next 
expected segment. If the segment is lost or incorrect, receiver 
will repeat the same ACK until received the expected segment 
correctly. Thus, the completeness of data can be guaranteed. 

For higher bandwidth usage, TCP will try to transmit a 
group of segments continuously, known as congestion window. 
The amount of segments in the group called window size. The 
window size will be increased when there’s no transmission 
timed-out or network congestion. TCP will repeat a congestion 
window until received next correct ACK. Once the 
transmission timed-out or congestion occurs, TCP will reduce 
the congestion window size, slow down the transmission rate, 
to make the segments transmitted correctly. 

B. Selective ACK 
In the TCP congestion window Go-Back-N mechanism, 

any segment loss or fault will make sender retransmit all the 
rest segments in the window, some segments will be 
transmitted more than once, which is not quietly efficiently. 
The selective ACK, SACK, specified in RFC2018 [9], which 
allows receiver to ask sender retransmit specified segments. 

The SACK scheme solved the redundant retransmission 
problem. Receiver specified the SACK options in the header of 
ACK. But there still exist extra costs. Sender takes time and 
computing resources to process the SACK and retransmit the 
specified segments. 

C. Network Coding Issues 
Network coding can help to recover the lost segments. 

There exist some researches applying network coding for peer-
to-peer content distribution, such as [2]. The most interesting 
part of network coding in this field is that data can divide into 
some pieces uniformly in logical. That is, if the original 
divided in to n blocks, any peer can decode and get the original 
data after collect n coded blocks. This characteristic also can be 
applied on error correction, such as [14]. The network coded 
TCP, TCP/NC, was proposed by Sundararajan et al, [11]-[13]. 
TCP/NC adds a coding layer between IP layer and TCP layer. 
The coding layer performance the linear network coding 
operations to encode or decode the segments. Kim et al, [7] and 
[8], analyzed TCP/NC and concluded that TCP/NC may have 
better throughput and better efficiency in lossy networks. Chan 
et al. [3] proposed the adaptive network coded TCP. They 
focus on adjusting the size of coding window according to the 
loss-rate. That is a quiet good idea, but there is no discuss 
about the compatibility issue. 

In this paper, we use this characteristic of network coding 
to recover the lost segments in TCP. Our goal is to minimize 
the coding operations and get optimal performance. 

III. LOSS-RATE DRIVEN CODING 
In this section, we proposed the loss-rate driven coding, 

LRC, and combined it with TCP, expressed as TCP/LRC 
below. The basic idea of our loss-rate driven coding, LRC, is 
sensing the segment loss rate and using coded segment as 
redundancy to recover the lost segments. We described our 
method in the following sub-sections. 

A. Transmission Model 
The sender and receiver both maintain their own coding 

buffer. The coding buffer is a cyclic queue, called sender queue, 
QS, and receiver queue, QR, in sender side and receiver side, 
respectively. The data came from upper layer would be packed 
into segments in sender side. Then, the sender would transmit 
the segment and put a copy into sender queue, QS. After 
received the segment, receiver would put a copy into receiver 
queue, QR, and process the data in the segment for upper layer. 
For both of QS and QR, the eldest segment is stored in the first 
element while the latest segment stored in the last element. In 
normal condition, QS and QR will rotate simultaneously with a 
little delay, like a tape, shown in Fig. 1. 

When the network congestion, segment loss or fault occurs, 
QS will rotate faster than QR. And some segments in QR may 
not store in right order, shown as Fig. 2. This condition should 
be fixed. For QR, there should be at least one segment in right 
order. The segments stored in QR with the right order are the 
candidates of coding head. Once sender detects the loos-rate 
greater than the threshold, sender will pause the processing of 
new data. Then encode the segments in QS into coded segments 
and transmit. The first segment in QS is the coding head. 
Receiver will receive the coded segments and put them into QR 
until the first segment in QR is coding head. That is, the 
segments stored in the first element of QS and QR have the 
same sequence number, shown as Fig. 3. Then, receiver can 
decode the coded segments in QR and get the original data. 
Thus, QS and QR become synchronized again and the problem 
has been fixed. 

 
Fig. 1. Both sender and receiver have a cylic queue with same size, when 
transmitting under normal condition, the access pointers of two cylic queue 
shoud rotate simutaneously. 

 

 
Fig. 2. When segment loss or fault occurs, the access pointer rotation will 
incompatable, and there may have out-of-ordered segments is receiver’s queue. 

 

 



 

 

Fig. 3. The amount of lost segments recovered by coded blocks, performing 
decode operations can get the original segments. 

 

Fig. 4 is the state diagram of proposed TCP/LRC 
mechanism. The transmission begins from the starting state, 
similar to the slow start procedure of original TCP. The 
segments will be transmitted in minimal transmission rate, 
which will be increased each next round. When QS is fully-
filled, it switches to normal transmission state. Sender will 
detect segment loss in this state. Once the segment loss 
exceeded the threshold, it switches to the coding recovery state. 
In the coding recovery state, sender has paused processing new 
data, and start to send the linear combination of the segments in 
QS. Receiver collects the coded segments and performs the 
decoding procedure. After recovered the lost segments, it 
switches back to normal transmission state. 

 

 
Fig. 4. State diagram of proposed TCP/LRC mechanism. 

 

B. Sensing Segment Loss-rate 
The ACK in original TCP sends the sequence number of 

next expected segment. In TCP/LRC, ACK sends the amount 
of correctly-received segments instead. Generally, the problem 
can be fixed by coding if the amount of lost segment is lower 
than the buffer size. As we discussed above, there should be at 
least one right-ordered segment in QR. But there may have 
segments not in the right order, which will push the right-
ordered segments out of queue. For this condition, the ACK 
should contain two indicators, the amount of right-ordered 
segments, Rc, and the amount of out-of-ordered segments, Rg. 

Sender monitors Rc and Rg by receiving the ACKs. If Rc is 
lower than the last segment of QS or Rg is greater than buffer 
size, the problem cannot be fixed by coding. Such situation 
should be avoided. So we defined two thresholds for Rc and Rg, 
the Tc and Tg. If Rc lower than Tc or Rg greater than Tg, sender 

will pause processing new data and start sending coded 
segment. 

C. Segment Format 
Considering the compatibility with original TCP, we use 

the regular TCP segment format. The header is briefly shown 
as TABLE I. . In original TCP, when the ACK flag is set, the 
sequence number of next expected segment will be filled into 
ACK number field. For the proposed TCP/LRC mechanism, 
when ACK flag is set, Rc will be filled into ACK number filled 
and Rg will be filled into URG pointer field. URG mechanism 
is for urgent data in TCP. When the URG flag is set, it means 
the data need process quickly, and the URG pointer field will 
be the position of the urgent data. When the segment with URG 
specified is received, receiver will process the segment with 
higher priority. For the segment lost condition, the urgency is 
also expired. So here we use the URG point field to transfer 
additional information in TCP/LRC. And URG mechanism is 
still available in normal state. 

There are nine bits for flags in the TCP header. The three 
reserved bits generally set to zero in original TCP. For 
identification of LRC, we use two of them as flags. First one is 
the LRC flag, which will be set if LRC mechanism is applied 
in current transmission. The other is COD flag, which will be 
set if the segment is TCP/LRC coded segment. 

TABLE I.  TCP SEGMENT HEADER 

Bit Fields Bit 

0 Source port Destination port 31 

32 Sequence number 63 

64 Acknowledgment number 95 

96 *1 *2 Flags Window size 127 

128 Checksum URG pointer 159 
*1. Data offset 

*2. Reserved 

 

D. Encoding Procedure 
Linear network coding performs the algebraic operations in 

Galois Field. Some researches applied the random linear 
network coding, which will choose coding coefficients 
randomly. Random linear network coding can ensure that the 
linear combination has a solution. But it will take bandwidth to 
transmit the coefficients to receivers. In LRC, we use a hash 
function, H, to generate the coding coefficients. With the hash 
function, we only need to put the hash seed in the header. We 
made LRC perform the coding operations in GF(28). Many 
researches use GF(28) because each number in GF(28) is a byte. 
This makes it easy for implementation. 

When entered the coding recovery state, sender would pick 
a hash seed, k, for different coded segment. Then get the n code 
coefficients for n segments, as (1). And put the linear 
combination, X, in the payload of coded segment, as (2). The 
hash seed, k, will filled in the URG pointer field in the segment 
header. The sequence number of coding head, D1, will be put in 
the sequence number field of coded segment. Thus, receiver 
can identify the coded segments as same group. 
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E. Decoding Procedure 
In linear network coding, n coded segments can be decode 

and get the original data by the operations in (3). In LRC, we 
hope the amount of coded segments is minimized. When 
received a coded segment, receiver will unpack it in the buffer 
and determine whether it has the parts of the coded segment by 
the coding head number. If receiver already has the uth segment 
of coded segment X, it will do the operation as (4) to remove 
the uth segment from the coded segment. X’ denotes the coded 
segment without the uth segment and Cu denotes the coding 
coefficient of X. Because the addition operation in Galois field 
can be performed by XOR, adding CuDu equals to remove it 
from X. The coding coefficients can be extracted from the hash 
function, H, with the hash seed in the URG pointer field of the 
segment header. Receiver also prepares a coding coefficient 
mask, M, once it received the coded block. The mask, M, is a 
binary array, or vector, with all zeros. When receiver find out it 
already has the uth segment, it will also set the uth bit of M to 
one. 
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When there are m zeros in M and receiver has received m 

coded segments with same coding head, receiver can decode 
and get the m original segments. Receiver will re-order the 
coding coefficients, only use the Ci with M(i) is zero. And the 
size of coefficient matrix in (3) will be reduced. Then, receiver 
can do the decoding operations and get the m original segments. 

F. Congestion Control 
Although network coding can improve the throughput, 

there still has the bandwidth limit of network link. Transmit the 
segments too fast will cause network congestion. Original TCP 
use the congestion window and ACK for congestion control. 
When transmitted an amount of segments, TCP will wait for 
the correct ACK before transmit other segments. TCP/NC adds 
a new layer between TCP layer and IP layer, so the congestion 
control is still handling by TCP. 

In this paper, TCP/LRC also maintains the congestion 
window mechanism of TCP. After sender transmitted an 
amount of segments, it would wait for the ACK before 
continues. When entered the coding recovery state, the 
congestion window size will be reduced. We are studying for 
advanced in this issue, to adjust the transmission more accurate 
by Rc and Rg. This may become our future work. 

IV. PERFORMANCE EVALUATION 

A. Theoretical Induction 
The first indicator of performance is throughput, which 

represents the amount of data can be transmitted per time 
period. For TCP without SACK, we assumed the loss 
probability of each segment is q, and the mean value of 
window size is w. The Z denotes the expected amount of actual 
transmitted segments, that is, considered the retransmitted or 
redundant segments. We calculate the usage of network link 
like (5). According to the Go-Back-N retransmission scheme of 
TCP, Z will be the equation in (6). Our proposed TCP/LRC 
mechanism can reduce Z to Z’ shown in (7). 

 

 ௔௠௢௨௡௧  ௢௙  ௢௥௜௚௜௡௔௟  ௗ௔௧௔
௘௫௣௘௖௧௘ௗ  ௔௠௢௨௡௧  ௢௙  ௧௥௔௡௦௠௜௦௦௜௢௡ =   ௪௓   (5) 

 
 Z = w + ቀଵା௪ଶ ቁ (1 − (1 − 𝑞)௪)  (6) 

 
 𝑍′ = 𝑤(1 + 𝑞)  (7) 

 
 

Comparing with TCP/NC, our TCP/LRC mechanism has 
no transmission overhead because we use a hash function to 
generate the coding coefficients. The seed of hash function can 
be filled in the URG pointer of TCP header. TCP/LRC doesn’t 
need extra transmission for coded segments. Moreover, 
TCP/LRC do the coding operations only in needed condition, 
the computing overhead can be minimized. 

For the computing complexity, according to (2), the 
complexity of encoding n segments is O(n2). This complexity 
level is similar to some searching and sorting algorithms. So 
encoding operation is acceptable for most of systems. The 
decoding operations in (3) have a complexity of O(n3). This is 
more complicated than most of other operations and is possible 
to solve by hardware decoding in the future. The proposed 
LRC mechanism minimized the coding operations, also 
minimized the extra costs of network coding. 

B. Packet Loss Model 
For the accuracy of simulation, we studied the packet loss 

model of real computer networks with wireless media. The 
packet losses we discuss here are caused by wireless 
interference or fading, or sporadic fault in the network device, 
not caused by link failed or network device failed. Hohlfeld et 
al, [6] and [4], analyzed the packet loss model by the Gilbert-
Elliott Model in Fig. 5, which is inspired by Markov Model. 
Each of the network links is either in good (G) or bad (B) state. 
The probability of a correctly-transmitted bit in good state is k, 
while in bad state is h. In other words, the bit error rates in the 
two states are 1-k and 1-h, respectively. In the good state, the 
probability of switching to bad state is p, staying in good state 
is 1-p. In the bad state, the probability of switching to good 
state is r, staying in bad state is 1-r. These works discussed the 
packet loss in networks including wireless network and mobile 
network. They focus on the quality of media streams, the UDP-
like traffics, through the networks. The UDP-like traffics are 
quietly different from TCP traffics. Without transmission 



control and the retransmission mechanism, UDP-like protocols 
cannot provide reliable transmission, but may have higher 
throughput because they do not have to wait for ACK. 
Studying the packet loss-model of UDP-like traffics can help to 
improve the performance of UDP-like protocol. For TCP with 
network coding, understanding the loss-model also can help to 
optimize the amount of retransmission and improve the 
performance. 

 
Fig. 5. The Gilber-Elliot Model defines the network link with two states, 
good (G) state and bad (B) state. 

C. Simulation Results 
For simulation, we emulate the lossy network environment 

by the Gilbert-Elliot Model. The probability from the good 
state to the bad state is 0.1, while the probability from bad state 
to good state is 0.3. And the bit error rate in the good state and 
bad state are 0.000001 and 0.000002 respectively.  The content 
length is 240,000 bytes while each segment carrying 1200 
bytes. There are 200 original segments in each round. We 
simulated 20 rounds, after each round, the bit error rate in both 
good state and bad state increased 0.000003. We compared the 
proposed mechanism, labeled as TCP/LRC here, with TCP/NC 
and TCP Reno. Fig. 6 shows the relationship between dropped 
segments and actual transmitted segments. As the growth of bit 
error rate, the amount of dropped segments also increased after 
each round. TCP Reno detects segment loss by time-out or 
triple-duplicated ACK and discarded the out-of-ordered 
segments, so the number of actual transmitted segments was 
much more than the dropped segments plus the original 
segments. TCP/NC and TCP/LRC transmit the linear 
combination for the error recovery condition, so the number of 
actual transmitted segments equal to the dropped segments plus 
the original segment. 

 
Fig. 6. Comparison of the exact transmitted segments with the bit error rate 
increased after each round.. 

We also compared the total amount of transmitted data in 
transport layer, shown as Fig. 7. TCP/NC has additional 
information for network coding in the segment. As a result, 
TCP/NC has to transmit more data. Our TCP/LRC just uses the 
original TCP header, so it will be more efficient when 
transmitting large content. 

 
Fig. 7. Comparison of TCP/LRC and TCP/NC by the amout of transmitted 
data, in bytes. 

For the computing complexity, Fig. 8 showed that our 
TCP/LRC has less coded segments than TCP/NC. The 
encoding and decoding procedure in TCP/LRC is minimized. 
This let TCP/LRC can have lower power consumption and 
lower computing resource requirement. 

 
Fig. 8. Comparison of TCP/LRC and TCP/NC by the amount of coded 
segments. 

V. CONCLUSIONS 
In this paper, we proposed the loss-rate driven coding, LRC, 

and the TCP/LRC mechanism. With this mechanism, the 
amount of encoding operations and decoding operations can be 
minimized. The coded segment will be used only if needed. 
And the amount of decoding operations is also reduced to the 
actual needed amount. Thus, this mechanism will be easier to 
implement in the embedded systems with limited system 
resources. We also used the original TCP segment header in 

 

 

 

 



the proposed mechanism. This makes the implement of 
TCP/LRC compatible with the original TCP. In normal status, 
the features of original TCP, such as URG, is still available. 
For the future works, we are studying about the congestion 
control issue. With a more accurate congestion control scheme, 
we hope the throughput could be optimized in the future. 
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