
Applying Loss-rate Driven Network Coding to
Transmission Control Protocol

Yihjia Tsai
Dept. of Computer Science and Information Engineering

Tamkang University
Taipei, Taiwan

eplusplus@gmail.com

Chaoyuan Chiang
Dept. of Computer Science and Information Engineering

Tamkang University
Taipei, Taiwan

cory.scorpio@gmail.com

Abstract—Transmission control is an important issue in the
Internet or other computer networks today. The retransmission
scheme in TCP cannot have the best throughput in the network
scenarios with more wireless links or complicated topologies.
Some related works proposed the solution by network coding.
Network coding is suitable for generate the redundant data for
error correction. In this paper, we discussed such solutions. Then
we proposed the loss-rate driven coding, LRC, for transmission
control. The proposed mechanism can minimize the coding
operations. Applying LRC to TCP will have lower power
consumption and lower computing resource requirement.

Keywords— linear network coding; transmission control; TCP

I. INTRODUCTION
Transport layer is an important part in the protocol stack of

Internet and other modern computer networks today. The
Transmission Control Protocol, TCP, is one of the transport
layer protocols. TCP provides reliable communication for
upper layer applications by the acknowledgment mechanism.
With acknowledgment mechanism, TCP can detect the
segment loss and sense the network condition. Once a segment
loosed or timed-out, it represents the network congestion
occurred. TCP would control the transmission rate by adjusting
the congestion window size to avoid network congestion.

TCP was developed for wired networks at beginning.
Wired networks are simple, if the segment loss became often,
the network is in congestion. TCP will reduce the transmission
rate once congestion occurs. In the modern network scenario,
more wireless links, more carrier types, more complicated and
larger topologies, there are more reasons caused segment loss
or time-out, such as interference, fading, or temporary fault in
the intermediate network device. The retransmission and
congestion window adjustment policy of TCP may decrease the
efficiency of transmission. In other words, TCP cannot reach
the optimal usage of network throughput in some situations.
For this issue, there exist some researches using network
coding to improve the usage of network throughput in TCP
transmission.

Network coding was first proposed in 2000 [1], which
provides solution for optimizing network throughput in
wireless networks, such as [5]. The major idea is combining
data by XOR operations in broadcasting networks to minimize
the amount of transmissions. A branch of network coding is the

linear network coding [10]. Linear network coding is often
applied in guaranteeing the fairness of peer-to-peer content
distribution [2] or generating redundant data for error-
correction [14]. The most interesting part of linear network
coding is that it can distribute a large content into n pieces
equally in logical. For peer-to-peer content distribution, each
peer can get the original content by decoding the n received
coded pieces. Consider the transmission in lossy networks, if
sender divides the data into blocks and transmit in linear
coding continuously, receiver can decode and get the original
data after receiving any n blocks. The receiver doesn’t have to
care the order of blocks. Some researches applied the idea
above to TCP with lossy networks. We discussed those works
in next section below.

Linear network coding seems a good solution. However,
coding takes system resources on the devices. The
implementations of linear network coding use the algebraic
operations on Galois Field. The operations in Galois Field are
performing by bitwise XOR or bit-shift operations. The
decoding procedure is more complicated than encoding
procedure. Minimizing the coded data and reducing the
decoding works will have better computing efficiency for the
devices. In other words, that would be more friendly to
embedded devices with limited system resources.

In this paper, we proposed the idea of loss-rate driven
coding. We designed a transmission control mechanism, which
use network coding as redundancy. The amount of redundancy
is related to loss-rare sensed. In the second section, we
reviewed the TCP mechanism and related works. Then, we
proposed our loss-rate driven coding idea in third section,
followed by the performance evaluation and conclusions.

II. TCP MECHANISM REVIEW

A. Congestion Control
The TCP data unit called segment, the data from upper

layer would be divided into segments and transmit. Since the
bandwidth of network links and the buffer size of network
devices are limited, the packet would be dropped if the data
comes faster than the bandwidth of network link. Once packets
have been dropped in the lower layer, the transport layer
segments would be lost or broken. TCP introduced the
acknowledgment mechanism. Sender transmits the segment
with sequence number and header checksum. Receiver checks

the received segment. If the segment is received correctly,
receiver sends an acknowledgement, ACK, to inform the
sender. The ACK contains the sequence number of next
expected segment. If the segment is lost or incorrect, receiver
will repeat the same ACK until received the expected segment
correctly. Thus, the completeness of data can be guaranteed.

For higher bandwidth usage, TCP will try to transmit a
group of segments continuously, known as congestion window.
The amount of segments in the group called window size. The
window size will be increased when there’s no transmission
timed-out or network congestion. TCP will repeat a congestion
window until received next correct ACK. Once the
transmission timed-out or congestion occurs, TCP will reduce
the congestion window size, slow down the transmission rate,
to make the segments transmitted correctly.

B. Selective ACK
In the TCP congestion window Go-Back-N mechanism,

any segment loss or fault will make sender retransmit all the
rest segments in the window, some segments will be
transmitted more than once, which is not quietly efficiently.
The selective ACK, SACK, specified in RFC2018 [9], which
allows receiver to ask sender retransmit specified segments.

The SACK scheme solved the redundant retransmission
problem. Receiver specified the SACK options in the header of
ACK. But there still exist extra costs. Sender takes time and
computing resources to process the SACK and retransmit the
specified segments.

C. Network Coding Issues
Network coding can help to recover the lost segments.

There exist some researches applying network coding for peer-
to-peer content distribution, such as [2]. The most interesting
part of network coding in this field is that data can divide into
some pieces uniformly in logical. That is, if the original
divided in to n blocks, any peer can decode and get the original
data after collect n coded blocks. This characteristic also can be
applied on error correction, such as [14]. The network coded
TCP, TCP/NC, was proposed by Sundararajan et al, [11]-[13].
TCP/NC adds a coding layer between IP layer and TCP layer.
The coding layer performance the linear network coding
operations to encode or decode the segments. Kim et al, [7] and
[8], analyzed TCP/NC and concluded that TCP/NC may have
better throughput and better efficiency in lossy networks. Chan
et al. [3] proposed the adaptive network coded TCP. They
focus on adjusting the size of coding window according to the
loss-rate. That is a quiet good idea, but there is no discuss
about the compatibility issue.

In this paper, we use this characteristic of network coding
to recover the lost segments in TCP. Our goal is to minimize
the coding operations and get optimal performance.

III. LOSS-RATE DRIVEN CODING
In this section, we proposed the loss-rate driven coding,

LRC, and combined it with TCP, expressed as TCP/LRC
below. The basic idea of our loss-rate driven coding, LRC, is
sensing the segment loss rate and using coded segment as
redundancy to recover the lost segments. We described our
method in the following sub-sections.

A. Transmission Model
The sender and receiver both maintain their own coding

buffer. The coding buffer is a cyclic queue, called sender queue,
QS, and receiver queue, QR, in sender side and receiver side,
respectively. The data came from upper layer would be packed
into segments in sender side. Then, the sender would transmit
the segment and put a copy into sender queue, QS. After
received the segment, receiver would put a copy into receiver
queue, QR, and process the data in the segment for upper layer.
For both of QS and QR, the eldest segment is stored in the first
element while the latest segment stored in the last element. In
normal condition, QS and QR will rotate simultaneously with a
little delay, like a tape, shown in Fig. 1.

When the network congestion, segment loss or fault occurs,
QS will rotate faster than QR. And some segments in QR may
not store in right order, shown as Fig. 2. This condition should
be fixed. For QR, there should be at least one segment in right
order. The segments stored in QR with the right order are the
candidates of coding head. Once sender detects the loos-rate
greater than the threshold, sender will pause the processing of
new data. Then encode the segments in QS into coded segments
and transmit. The first segment in QS is the coding head.
Receiver will receive the coded segments and put them into QR
until the first segment in QR is coding head. That is, the
segments stored in the first element of QS and QR have the
same sequence number, shown as Fig. 3. Then, receiver can
decode the coded segments in QR and get the original data.
Thus, QS and QR become synchronized again and the problem
has been fixed.

Fig. 1. Both sender and receiver have a cylic queue with same size, when
transmitting under normal condition, the access pointers of two cylic queue
shoud rotate simutaneously.

Fig. 2. When segment loss or fault occurs, the access pointer rotation will
incompatable, and there may have out-of-ordered segments is receiver’s queue.

Fig. 3. The amount of lost segments recovered by coded blocks, performing
decode operations can get the original segments.

Fig. 4 is the state diagram of proposed TCP/LRC
mechanism. The transmission begins from the starting state,
similar to the slow start procedure of original TCP. The
segments will be transmitted in minimal transmission rate,
which will be increased each next round. When QS is fully-
filled, it switches to normal transmission state. Sender will
detect segment loss in this state. Once the segment loss
exceeded the threshold, it switches to the coding recovery state.
In the coding recovery state, sender has paused processing new
data, and start to send the linear combination of the segments in
QS. Receiver collects the coded segments and performs the
decoding procedure. After recovered the lost segments, it
switches back to normal transmission state.

Fig. 4. State diagram of proposed TCP/LRC mechanism.

B. Sensing Segment Loss-rate
The ACK in original TCP sends the sequence number of

next expected segment. In TCP/LRC, ACK sends the amount
of correctly-received segments instead. Generally, the problem
can be fixed by coding if the amount of lost segment is lower
than the buffer size. As we discussed above, there should be at
least one right-ordered segment in QR. But there may have
segments not in the right order, which will push the right-
ordered segments out of queue. For this condition, the ACK
should contain two indicators, the amount of right-ordered
segments, Rc, and the amount of out-of-ordered segments, Rg.

Sender monitors Rc and Rg by receiving the ACKs. If Rc is
lower than the last segment of QS or Rg is greater than buffer
size, the problem cannot be fixed by coding. Such situation
should be avoided. So we defined two thresholds for Rc and Rg,
the Tc and Tg. If Rc lower than Tc or Rg greater than Tg, sender

will pause processing new data and start sending coded
segment.

C. Segment Format
Considering the compatibility with original TCP, we use

the regular TCP segment format. The header is briefly shown
as TABLE I. . In original TCP, when the ACK flag is set, the
sequence number of next expected segment will be filled into
ACK number field. For the proposed TCP/LRC mechanism,
when ACK flag is set, Rc will be filled into ACK number filled
and Rg will be filled into URG pointer field. URG mechanism
is for urgent data in TCP. When the URG flag is set, it means
the data need process quickly, and the URG pointer field will
be the position of the urgent data. When the segment with URG
specified is received, receiver will process the segment with
higher priority. For the segment lost condition, the urgency is
also expired. So here we use the URG point field to transfer
additional information in TCP/LRC. And URG mechanism is
still available in normal state.

There are nine bits for flags in the TCP header. The three
reserved bits generally set to zero in original TCP. For
identification of LRC, we use two of them as flags. First one is
the LRC flag, which will be set if LRC mechanism is applied
in current transmission. The other is COD flag, which will be
set if the segment is TCP/LRC coded segment.

TABLE I. TCP SEGMENT HEADER

Bit Fields Bit

0 Source port Destination port 31

32 Sequence number 63

64 Acknowledgment number 95

96 *1 *2 Flags Window size 127

128 Checksum URG pointer 159
*1. Data offset

*2. Reserved

D. Encoding Procedure
Linear network coding performs the algebraic operations in

Galois Field. Some researches applied the random linear
network coding, which will choose coding coefficients
randomly. Random linear network coding can ensure that the
linear combination has a solution. But it will take bandwidth to
transmit the coefficients to receivers. In LRC, we use a hash
function, H, to generate the coding coefficients. With the hash
function, we only need to put the hash seed in the header. We
made LRC perform the coding operations in GF(28). Many
researches use GF(28) because each number in GF(28) is a byte.
This makes it easy for implementation.

When entered the coding recovery state, sender would pick
a hash seed, k, for different coded segment. Then get the n code
coefficients for n segments, as (1). And put the linear
combination, X, in the payload of coded segment, as (2). The
hash seed, k, will filled in the URG pointer field in the segment
header. The sequence number of coding head, D1, will be put in
the sequence number field of coded segment. Thus, receiver
can identify the coded segments as same group.

 {𝐶ଵ, 𝐶ଶ, … , 𝐶௡} = 𝐻(𝑘) (1)

 𝑋 = 𝐶ଵ𝐷ଵ + 𝐶ଶ𝐷ଶ +⋯+ 𝐶௡𝐷௡ = ∑ (𝐶௜𝐷௜)೙

೔సభ (2)

E. Decoding Procedure
In linear network coding, n coded segments can be decode

and get the original data by the operations in (3). In LRC, we
hope the amount of coded segments is minimized. When
received a coded segment, receiver will unpack it in the buffer
and determine whether it has the parts of the coded segment by
the coding head number. If receiver already has the uth segment
of coded segment X, it will do the operation as (4) to remove
the uth segment from the coded segment. X’ denotes the coded
segment without the uth segment and Cu denotes the coding
coefficient of X. Because the addition operation in Galois field
can be performed by XOR, adding CuDu equals to remove it
from X. The coding coefficients can be extracted from the hash
function, H, with the hash seed in the URG pointer field of the
segment header. Receiver also prepares a coding coefficient
mask, M, once it received the coded block. The mask, M, is a
binary array, or vector, with all zeros. When receiver find out it
already has the uth segment, it will also set the uth bit of M to
one.

 ൥
𝐷ଵ
⋮
𝐷௡
൩ = ൥

𝐶ଵଵ ⋯ 𝐶௡ଵ
⋮ ⋱ ⋮
𝐶ଵ௡ ⋯ 𝐶௡௡

൩
ିଵ

× ൥
𝑋ଵ
⋮
𝑋௡
൩ (3)

 𝑋ᇱ = 𝑋 + 𝐶௨𝐷௨ (4)

When there are m zeros in M and receiver has received m

coded segments with same coding head, receiver can decode
and get the m original segments. Receiver will re-order the
coding coefficients, only use the Ci with M(i) is zero. And the
size of coefficient matrix in (3) will be reduced. Then, receiver
can do the decoding operations and get the m original segments.

F. Congestion Control
Although network coding can improve the throughput,

there still has the bandwidth limit of network link. Transmit the
segments too fast will cause network congestion. Original TCP
use the congestion window and ACK for congestion control.
When transmitted an amount of segments, TCP will wait for
the correct ACK before transmit other segments. TCP/NC adds
a new layer between TCP layer and IP layer, so the congestion
control is still handling by TCP.

In this paper, TCP/LRC also maintains the congestion
window mechanism of TCP. After sender transmitted an
amount of segments, it would wait for the ACK before
continues. When entered the coding recovery state, the
congestion window size will be reduced. We are studying for
advanced in this issue, to adjust the transmission more accurate
by Rc and Rg. This may become our future work.

IV. PERFORMANCE EVALUATION

A. Theoretical Induction
The first indicator of performance is throughput, which

represents the amount of data can be transmitted per time
period. For TCP without SACK, we assumed the loss
probability of each segment is q, and the mean value of
window size is w. The Z denotes the expected amount of actual
transmitted segments, that is, considered the retransmitted or
redundant segments. We calculate the usage of network link
like (5). According to the Go-Back-N retransmission scheme of
TCP, Z will be the equation in (6). Our proposed TCP/LRC
mechanism can reduce Z to Z’ shown in (7).

 ௔௠௢௨௡௧ ௢௙ ௢௥௜௚௜௡௔௟ ௗ௔௧௔
௘௫௣௘௖௧௘ௗ ௔௠௢௨௡௧ ௢௙ ௧௥௔௡௦௠௜௦௦௜௢௡ = ௪௓ (5)

 Z = w + ቀଵା௪ଶ ቁ (1 − (1 − 𝑞)௪) (6)

 𝑍′ = 𝑤(1 + 𝑞) (7)

Comparing with TCP/NC, our TCP/LRC mechanism has
no transmission overhead because we use a hash function to
generate the coding coefficients. The seed of hash function can
be filled in the URG pointer of TCP header. TCP/LRC doesn’t
need extra transmission for coded segments. Moreover,
TCP/LRC do the coding operations only in needed condition,
the computing overhead can be minimized.

For the computing complexity, according to (2), the
complexity of encoding n segments is O(n2). This complexity
level is similar to some searching and sorting algorithms. So
encoding operation is acceptable for most of systems. The
decoding operations in (3) have a complexity of O(n3). This is
more complicated than most of other operations and is possible
to solve by hardware decoding in the future. The proposed
LRC mechanism minimized the coding operations, also
minimized the extra costs of network coding.

B. Packet Loss Model
For the accuracy of simulation, we studied the packet loss

model of real computer networks with wireless media. The
packet losses we discuss here are caused by wireless
interference or fading, or sporadic fault in the network device,
not caused by link failed or network device failed. Hohlfeld et
al, [6] and [4], analyzed the packet loss model by the Gilbert-
Elliott Model in Fig. 5, which is inspired by Markov Model.
Each of the network links is either in good (G) or bad (B) state.
The probability of a correctly-transmitted bit in good state is k,
while in bad state is h. In other words, the bit error rates in the
two states are 1-k and 1-h, respectively. In the good state, the
probability of switching to bad state is p, staying in good state
is 1-p. In the bad state, the probability of switching to good
state is r, staying in bad state is 1-r. These works discussed the
packet loss in networks including wireless network and mobile
network. They focus on the quality of media streams, the UDP-
like traffics, through the networks. The UDP-like traffics are
quietly different from TCP traffics. Without transmission

control and the retransmission mechanism, UDP-like protocols
cannot provide reliable transmission, but may have higher
throughput because they do not have to wait for ACK.
Studying the packet loss-model of UDP-like traffics can help to
improve the performance of UDP-like protocol. For TCP with
network coding, understanding the loss-model also can help to
optimize the amount of retransmission and improve the
performance.

Fig. 5. The Gilber-Elliot Model defines the network link with two states,
good (G) state and bad (B) state.

C. Simulation Results
For simulation, we emulate the lossy network environment

by the Gilbert-Elliot Model. The probability from the good
state to the bad state is 0.1, while the probability from bad state
to good state is 0.3. And the bit error rate in the good state and
bad state are 0.000001 and 0.000002 respectively. The content
length is 240,000 bytes while each segment carrying 1200
bytes. There are 200 original segments in each round. We
simulated 20 rounds, after each round, the bit error rate in both
good state and bad state increased 0.000003. We compared the
proposed mechanism, labeled as TCP/LRC here, with TCP/NC
and TCP Reno. Fig. 6 shows the relationship between dropped
segments and actual transmitted segments. As the growth of bit
error rate, the amount of dropped segments also increased after
each round. TCP Reno detects segment loss by time-out or
triple-duplicated ACK and discarded the out-of-ordered
segments, so the number of actual transmitted segments was
much more than the dropped segments plus the original
segments. TCP/NC and TCP/LRC transmit the linear
combination for the error recovery condition, so the number of
actual transmitted segments equal to the dropped segments plus
the original segment.

Fig. 6. Comparison of the exact transmitted segments with the bit error rate
increased after each round..

We also compared the total amount of transmitted data in
transport layer, shown as Fig. 7. TCP/NC has additional
information for network coding in the segment. As a result,
TCP/NC has to transmit more data. Our TCP/LRC just uses the
original TCP header, so it will be more efficient when
transmitting large content.

Fig. 7. Comparison of TCP/LRC and TCP/NC by the amout of transmitted
data, in bytes.

For the computing complexity, Fig. 8 showed that our
TCP/LRC has less coded segments than TCP/NC. The
encoding and decoding procedure in TCP/LRC is minimized.
This let TCP/LRC can have lower power consumption and
lower computing resource requirement.

Fig. 8. Comparison of TCP/LRC and TCP/NC by the amount of coded
segments.

V. CONCLUSIONS
In this paper, we proposed the loss-rate driven coding, LRC,

and the TCP/LRC mechanism. With this mechanism, the
amount of encoding operations and decoding operations can be
minimized. The coded segment will be used only if needed.
And the amount of decoding operations is also reduced to the
actual needed amount. Thus, this mechanism will be easier to
implement in the embedded systems with limited system
resources. We also used the original TCP segment header in

the proposed mechanism. This makes the implement of
TCP/LRC compatible with the original TCP. In normal status,
the features of original TCP, such as URG, is still available.
For the future works, we are studying about the congestion
control issue. With a more accurate congestion control scheme,
we hope the throughput could be optimized in the future.

REFERENCES
[1] R. Ahlswede, N. Cai, S. Y. Li, and R. W. Yeung, "Network information

flow," Information Theory, IEEE Transactions on, vol. 46, pp. 1204-
1216, 2000

[2] Gkantsidis, C.; Rodriguez, P.R., "Network coding for large scale content
distribution," INFOCOM 2005, 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE,
vol.4, no., pp.2235,2245 vol. 4, 13-17 March 2005

[3] Chan, Yi-Cheng, and Ya-Yi Hu, “Adaptive Network Coding Scheme for
TCP over Wireless Sensor Networks,” International Journal of
Computers, Communications and Control 8.6, 2013

[4] Hasslinger, Gerhard; Hohlfeld, Oliver, "The Gilbert-Elliott Model for
Packet Loss in Real Time Services on the Internet," Measuring,
Modelling and Evaluation of Computer and Communication Systems
(MMB), 2008 14th GI/ITG Conference - , vol., no., pp.1,15, March 31
2008-April 2 2008

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: practical wireless network coding,” IEEE/ACM Trans.
Netw. 16, 3 (June 2008), pp. 497-510, 2008

[6] Hohlfeld, Oliver. "Stochastic packet loss model to evaluate QoE
impairments,"PIK-Praxis der Informationsverarbeitung und
Kommunikation 32.1 (2009) pp. 53-56, 2009

[7] M. Kim, T. Klein, E. Soljanin, J. Barros, and M. Medard, "Modeling
Network Coded TCP: Analysis of Throughput and Energy Cost," arXiv
preprint arXiv:1208.3212, 2012

[8] M. Kim, M. Medard, and J. o. Barros, "Modeling network coded TCP
throughput: A simple model and its validation," 2011

[9] Mathis, M. et al., “RFC 2018,” Internet Engineering Task Force (IETF),
1996

[10] S. Y. Li, R. W. Yeung, and N. Cai, "Linear network coding,"
Information Theory, IEEE Transactions on, vol. 49, pp. 371-381, 2003

[11] J. K. Sundararajan, S. Jakubczak, M. Medard, M. Mitzenmacher, and J.
Barros, "Interfacing network coding with TCP: an implementation,"
arXiv preprint arXiv:0908.1564, 2009

[12] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M.
Mitzenmacher, and J. Barros, "Network coding meets TCP: Theory and
implementation," Proceedings of the IEEE, vol. 99, pp. 490-512, 2011

[13] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J.
Barros, "Network coding meets TCP," INFOCOM 2009, IEEE, vol., no.,
pp.280,288, 19-25 April 2009

[14] Zhen Zhang, "Linear Network Error Correction Codes in Packet
Networks," Information Theory, IEEE Transactions on, vol.54, no.1,
pp.209,218, Jan. 2008

