
EASEC-14 January 6-8, 2016, Ho Chi Minh City, Vietnam 

1 

 

FINITE ELEMENT ANALYSIS OF FINITE DEFORMATION PROBLEMS 
FOR BIO-POLYMER MATERIALS 

 

Pin-Jun Chen1, Bo-Sen Chuang1 and Chien-Kai Wang2 

1 Civil Engineering, Tamkang University, Taiwan 

2 Faculty of Civil Engineering, Tamkang University, Taiwan 

ABSTRACT 

For shape maintenance and migration of living organisms, bio-polymer materials play important 

roles for the redistribution of internal forces in the biological structures. A substantial amount of 

observations have been made over the past decades to show how the structures composed of 

bio-polymers deform and identify what the characteristics of the network materials are. For example, 

it has been revealed both experimentally and computationally that as macroscopic loading goes, the 

bio-polymer materials of the network type experience alterations from entropy-directed shape 

changes to structural deformations, such as filament bending and stretching. In addition, the 

transition point happens as the levels of macroscopic stress reach around 1% of the bulk modulus of 

the materials (Lin et al. 2014). Hence, here finite element formulations are developed to solve the 

large deformation problems for the bio-polymer materials in solutions by introducing fluid-solid 

interaction forces across the immersed boundaries of the materials. We anticipate that this technique 

will open doors for understanding more physiological states of biological specimens under 

environmental loading. 
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1. INTRODUCTION 

For recent decades, a great amount of investigation efforts have been put into the fluid-solid 

interaction naturally occurring in wide-range of engineering problems and physical phenomena. To 

realize the fluid-structure interaction complexity, mechanics of fluid-solid boundaries has to be 

accomplished thoroughly in different models. Through the models of computational mechanics, the 

research achievements facilitate challenging engineering applications, for example, geo-mechanical 

engineering, soil-structure interaction, microelectromechanical systems, and microfluidic devices. 

Here, the goal of this research is to implement the modern finite element analysis for solving 

fluid-solid interaction problems. The formulations of mechanics which embrace conservation 

equations, kinematics descriptions and computing algorithms especially developed for elaborating 

fluid-solid interaction models are also the main theme of this paper. 
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2. FORMULATIONS OF FINITE ELEMENT METHOD FOR FLUID-SOLID 

INTERACTION 

We may consider the finite element method for solving fluid-solid interaction problems under the 

following three main subjects: the boundary force mapping from solids to fluids, the boundary 

value problem in solid mechanics, and the model problem of viscous incompressible fluids in fluid 

dynamics. The detailed description of the finite element method dealing with the interaction 

between fluids and nonlinear elastic solids with large deformations will be given in this section. 

2.1. Boundary force mapping from solids to fluids 

The framework named as the immersed boundary (IB) method for solving the fluid-solid interaction 

problems was initially developed by Peskin to investigate blood fluids through a heart valve 

structure (Peskin 1972). In this framework, various fluid-structure interaction problems can be 

elucidated through the boundary force mapping from the solid to the fluid. The immersed boundary 

between the solid and fluid is considered as a zone directly blending the fluid-solid interactions into 

forces acting the neighboring fluid and solid (Peskin 2002). The concept of the fluid-solid finite 

element formulations in this paper is an adaptation of Peskin’s IB method. Having got the special 

framework out of Peskin’s work, we may turn to our central idea of dealing fluid-solid interactions 

in finite element formulations that the interaction of fluids with deformable solids is through the 

forces exerted onto the fluids by the adjacent solids across the immersed boundary. In continuum, 

the interaction forces subjected to elastic solids and incompressible Newtonian fluids act as 

externally applied body forces along the boundary appearing in the linear momentum balance 

equations of the solids with assured traction boundary conditions and the Navier-Stoke equations of 

the fluids respectively: 

,
s s

ij j i ib u      subjected to s
j ij in f   on the immersed boundary s , (1) 

, , ,
f fi

j i j i i jj i

v
v v p v f

t
       
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where σ  is the Cauchy stress field, b  is the body force distribution, u  is the displacement field 

in the solid domain s , sf  is the traction distribution on s , v  is the velocity field, p  is the 

pressure distribution, ff  is the external force at time t in the fluid domain f , and s  and f  

are the mass density of the solids and fluids correspondingly. In this paper, the superscript s  

represents quantities for solids, while f  for fluids. Here, we assume that the externally body 

forces are applied relatively slowly compared to environmental chemical loadings on the solid 

surfaces. Hence, in certain circumstances, the solid is in quasistatic equilibrium, and its inertial 

effects can be reasonably ignored. Furthermore, the equilibrium equations in terms of stresses can 

be replaced with an integral expression which is namely weak form by the principle of virtual work 
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(PVW) for finite element analysis in solid mechanics. The integral version of the equilibrium 

equations is thus derived as 

,s s s

s s
ij i j i i i iu dV b u dV f u dS    

  
    . (3) 

The PVW states that if the stress field satisfies the weak form for all kinematically admissible 

virtual displacement fields iu , it will automatically satisfy the equilibrium equation and the 

traction boundary conditions presented in Equation (1). In this study, we are proposing that 

fluid-solid interaction forces acting on the neighboring fluid and solid particles are naturally action 

and reaction to each other satisfying Newton’s third law. To advance the finite element formulation 

for fluid-solid interaction problems, we apply the algorithm developed by Peskin for mapping 

boundary forces from a solid surface onto its adjacent fluid particles (Peskin 2002) 

      , , ,
s

f f s f s
i if t f s t s t dS


  x x x , (4) 

where  ,s s tx  is a parametric immersed boundary configuration of the solid domain,  ,f f
if tx  

is the external force at location fx  along the boundary and time t  in the fluid domain, and 

( )f x  is a Dirac delta function. 

2.2. Boundary value problem in solid mechanics 

To understand mechanical responses of biological specimens under environmental loading related 

to possible physiological states, we consider a hyperelastic material model with the Neo-Hookean 

material description including nonlinear material behaviors and large shape changes for an isotropic 

solid. In continuum mechanics, the deformation measurements commonly used in large strain 

elasticity are the deformation gradient ijF , the Jacobian of the deformation gradient field J , and 

the Left Cauchy-Green deformation tensor ijB . In addition, the constitutive law of stress-strain 

relation for an isotropic hyperelastic material is defined by an energy function relating the strain 

energy density of the material to its deformation gradient. The strain energy density to the 

deformation gradient of a generalized Neo-Hookean solid is 

   21 1
1 3 1

2 2
U I J

 
    , (5) 

where 1  and 1  are the shear and bulk modulus of the solid respectively, and 1I  is 2/3/kkB J . 

For such finite strain problems, it is usually more convenient to evaluate the integrals appearing in 

the weak form of equilibrium equations over reference configurations, whereas the deformed 

configuration is unknown: 
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where ij  is Kirchhoff stress tensor, and   is the inverse surface Jacobian. Then, we apply the 

typical finite element approach for solving the nodal displacement on a set of meshes in an 

undeformed solid by introducing the usual finite element interpolation written as 

   
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where  a sN X  is the shape function, a
iu  is the nodal displacement, and n  is the number of 

nodes for an element in the meshes. Subsequently, the virtual work equation becomes 
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Now this is the system of nonlinear equations for the unknown nodal displacement b
ku . One may 

notice that the nonlinear behaviors of the solid are resulted from both material properties and 

geometry configurations. To solve the nonlinear virtual work equation, we apply the 

Newton-Raphson iteration algorithm by guessing the solution for nodal displacement as b
kw  and 

perturb it as b b
k kw dw . The equilibrium equation thus yields a system of linear equations by 

ignoring high order terms for solving b
kdw  in iteration progress as 

0b a a
aibk k i iK dw R F   , (9) 
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2.3. Model problem of viscous incompressible fluids in fluid dynamics 

In many fluid-structure interaction problems, the fluid density is reasonably set as a constant in 

certain ambient condition. For this kind of problems, the systems of equations are suggested to be 

solved by the discrete Fourier transform, implemented by the Fast Fourier Transform algorithm. To 

facilitate the implementation, the models for solving the problems are formulated on periodic 

domains (Peskin and McQueen 1996). The Navier-Stoke equations of the incompressible 

Newtonian fluids shown in equation (2) may be discretized by introducing the central difference 

operator 0
,h iD , the skew-symmetric difference operator  hS v  (Peskin 2002), and the tight 

Laplacian operator hL  as follows: 

  0
,

f fi
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S v D p L v f

t
       

v  and 0
, 0h i iD v  , (13) 
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To further improve numerical stability, a temporal discretization scheme with two substeps based 

on the second-order accurate Runge-Kutta method proposed by Lai and Peskin (Lai and Peskin 

2000) is used for the above system of ordinary differential equations. The preliminary substep, from 

level n  to 1 2n  , proceeds as follows: 
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Note that Equation (19) forms a system of equations with the unknowns 1 2n
iv   and 1 2np   for fx . 

Similarly, the final substep, from level n  to 1n  , proceeds as follows: 
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Again, note that Equation (21) forms a system of equations with the unknowns 1n
iv   and 1 2np   for 

fx . 

3. NUMERICAL EXAMPLE 

A close study on nanoindentation of hydrated collagen fibrils was made by Grant et al., and it 

revealed that the elastic modulus E  of individual collagen fibrils can be varied over a range of 

1.938-4.762 MPa in variation of sodium chloride solutions in water of 0-1 M concentration at pH 7 

(Grant et al. 2009). In this section, we will examine oscillations in the transverse direction of the 

cross section of an initially deformed collagen fibril in solutions with different NaCl concentrations. 

Consider the undeformed and initially deformed configurations of the cross section of the collage 

fibril parameterized respectively by 

     ,0 1 2 cos ,1 2 sin ,0
Ts s r s r s    X , and (22) 

     ,0 ,0 0, sin ,0
Ts ss s r s    x X , where 

21 10 ; 1 2     1 2

0 ; otherwise

sX r


   


. (23) 

In general, the Poisson’s ratio of collagen fibrils, which reflect the effect of network heterogeneity 

under macroscopic deformation fields and the realignment of the fibers, was reported 0.27 for the 

transverse direction of the fiber-aligned orientation in soft biological tissues by Stylianopoulos 

(Stylianopoulos 2008). Besides, the density and viscosity of sodium chloride solutions in water 

were systematically measured at 298.15 K by Zhang and Han (Zhang and Han 1996). Accordingly, 

we adopt these measured material properties of collagen fibrils and sodium chloride solutions in 

water of different concentrations which are listed in Table 1. This example is designed to solve the 

oscillation in transverse direction of the cross section of the initially deformed collagen fibril in 

solutions of different NaCl concentrations. The fluid domain has a size of 1 × 1 cm, and the 

geometry property of 0.2r   cm is set for the solid domain. Figure 1 shows the stress fields of the 

cross section of the collagen and fluid velocity contours in the NaCl solution in water of 0.50 M at 

different time steps. One may also observe the progress of collagen fibril oscillation through these 

deformed configurations. 

Using the parameters described above, we can examine further the strain energy evolution of the 

collagen in sodium chloride solutions during its oscillation progress through finite element analysis. 
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Table 1: Material properties of collagen fibrils in solutions of different NaCl concentrations 

Material property\Case I II III IV V 

Fluid      

  Molar concentration C (M) 0.00 0.25 0.50 0.75 1.00 

Density ρ (g/cm3) 0.9969 1.0071 1.0166 1.0261 1.0349 

Viscosity μ (mPa-s) 0.8911 0.9111 0.9309 0.9512 0.9722 

Solid 

Elastic modulus E (MPa) 2.138 1.938 2.486 3.005 4.762 

Figure 2 presents the comparison with the evolution of the ratio of the total strain energy to that at 

0t   of the collagen material in NaCl solutions with various concentrations. Besides, the inset 

presents the deformed configurations of the collagen material and velocity contours in the saline 

solutions with case I and V at time of 0.28 milliseconds. The results clearly illustrate that the 

collagen fibril becomes laxer along the transverse directions of its cross section while staying in the 

solution with lower concentrations of NaCl. 

 

Figure 1: The stress fields of the cross section of a collagen fibril in the sodium chloride 

solution in water of 0.50 M concentration at different time steps. 

4. CONCLUSIONS 

In this study, we proposed the finite element algorithm for considering the fluid-solid interaction 

forces acting on the neighboring fluid and solid particles as naturally action and reaction to each 

other satisfying Newton’s third law. As the computational results presented in this paper, this 

algorithm provides a unique way of analyzing mechanics problems of bio-polymer materials 

subjected environmental loading in fluids. 
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Figure 2: Comparison with the evolution of the ratio of the total strain energy to that at t = 0 

of the collagen fibril in NaCl solutions of various concentrations. Inset: Stress fields of the 

cross section at t = 0.28 (ms). 
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