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Abstract: This article presents the development of a wind tunnel aero-data based wind resistant design 

procedure for tall buildings. The objective is to provide more accurate design wind loads than the current wind 

code is capable of. The major works involve conducting large amount of wind tunnel experiments of rectangular 

tall buildings and formulating calculation models for alongwind, acrosswind and torsional design wind loads. 

The main challenge of the work is to be able to provide enough incentives to justify the extra effort needed from 

engineers. On the other hand, the tradeoff between wind load accuracy and calculation complexity needs to be 

carefully considered. Therefore, the development of artificial neuron networks and easy-to-use computer 

programs to facilitate the engineering application of the methodology were performed. 

Keywords: Design Wind Loads, Aerodynamic Database, Artificial Neural Networks, Wind Tunnel, Building 

Wind Code, Web Programming 

1. Introduction 

Wind effects on high-rise buildings include wind load on structural system, cladding pressure, habitants' 

serviceability and pedestrian level wind environment. Wind load acting on structural system, which could be 

essential for certain high-rise buildings, should be evaluated base on accurate buildings' response estimations. 
For most of the tall buildings, the design wind loads are determined by elaborate physical modeling via wind 

tunnel experiment. Prior to wind tunnel experiment, the building geometry and structural system are decided, in 

other words, the two most important factors that affecting buildings’ wind loads are set and, in most case, will be 

costly to change. At the present, wind code is used to provide preliminary design wind loads. However, wind 
code is constructed based on the wind loads data of isolated square (or rectangular) shaped buildings. It could be 

very conservative for tall buildings other than rectangular shape or buildings with shielding effect. On the other 

hand, it could be underestimated for very tall buildings, buildings with flexible structural systems or some 
particular interfering effects from adjacent buildings. If preliminary design wind loads can be obtained handily 

and with reasonable accuracy, then it could be used interactively with the building design process. So, the 

objective of this research project is to build a wind tunnel aero-data based wind resistant design guide for tall 
buildings, which has an intermediate function between wind code and actual wind tunnel simulation. 

Adopting aerodynamic database to assist wind resistant design has been promoted and developed in many 
wind engineering institutes, such as Kareem [1] and his associates Zhou et al [2] at University of Notre Dame, 

Tamura and his associates [3] at TPU, Kopp and Chen [4] at NIST, Cheng [5] and Wang [6] at Tamkang 

University (TKU). The construction of a database of rich and accurate contents is a tedious work. But the real 
challenge is how to put these data into good use. The following sections of the paper describe the wind tunnel 

experiments, the design wind load calculation procedure and the aero-data based coefficient and parameter 
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estimation methods. Also, the resulted computer programs are presented and the examined cases are discussed at 

the end. 

2. Wind Tunnel Tests 

All wind tunnel tests were conducted in an open-circuit, suction type wind tunnel with test section of 17m(L) 

× 2m(W) × 1.5m(H). Three turbulent boundary layer flows, designated by BL-A, BL-B, BL-C, with power law 

index α=0.32, 0.25, 0.15, respectively, were generated to represent wind profiles over urban, suburban and open 

country terrains. During model testing, velocity at model height, UH, was taken as the normalization factor for 
the reduced velocity, Ur=UH/f0D. Blockage ratio is less than 5%, therefore, its effect ignored. Reynolds number 

for the upper half of the testing model was kept greater than 4×10
4
 which is higher than Re,cr≒2×10

4
 required 

for Reynolds number similarity. 

The geometry variations of the pressure models are: 13 sets of aspect ratios for H/ = 1 to 7; 13 sets of side 
ratios for D/B= 1/5 to 5/1. Acrylic pressure models and high speed electronic pressure scanner system were used 

in this set of wind tunnel experiment. A typical experiment setup is shown in Figure 1. For models with aspect 

ratio 7, 380 pressure taps were installed on 15 levels along the model height; and 9 levels, 230 pressure taps for 
models with aspect ratio 3. The sampling rate was 200Hz and the sample length was 287 seconds. Besides the 

conventional mean and RMS base force coefficients and spectra, local force characteristics and various force 

coherences were studied. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Experimental Setup in the Wind Tunnel I at TKU 

3. Design Wind Load Models 

This section explains the wind load calculation procedure developed, which consists of three parts, 
alongwind, acrosswind and torsional wind loads. 

3.1. Alongwind Design Wind Load 
During the development of the present model, the wind load is divided into two parts, i.e., windward and 

leeward force coefficients, CDW & CDL, are used to replace the single drag coefficient, CD. The basic assumption 
is that mean and dynamic wind forces on the windward face follow the strip theory and quasi-steady theorem; 

the wind force on the leeward face is assumed to be constant with respect to the reference wind speed, UH. The 

mean component of the alongwind design wind load can be expressed in the form of 

     ))/((2/1)( 22

DLDWHD CCHzBUzF                                                                     (1) 

Where ρ is air density, B is building width and α is power law exponent. 

The Equivalent Static Wind Load (ESWL) for the RMS of the background part can be expressed by: 

          ))/(()( 3/2

2
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λD is a reduction factor to account for the imperfect spatial correlation of fluctuating wind loads between the 

windward-leeward faces and along the building height.  

The equivalent static load for the RMS resonant part is assumed to have same distribution as the inertia force. 

Assuming the building mass is uniformly distributed and model shape has the form of φ(z)=(z/H)β, the resonant 
component of wind load at height z, FD,R(z), can be expressed as: 

   
2/1

0003/2

2

, )4/)()(()/)()(12()(   fSffHzBIUzF uRHHRD                           (3) 

Where )( 0fSu is a normalized wind velocity spectrum, and χR(f) is an aerodynamic admittance function in 

the generalized coordinate.  χR(f)  is a complex function of several flow field and structural parameters can be 

acquired through lengthy calculations. 

The alongwind design wind load is: 

2/12

,

22

,

2 ))()(()()( zFgzFgzFzD RDRBDBD                                                                (4) 

3.2. Acrosswind And Torsional Design Wind Load 
The acrosswind design wind load WL(z) for a rectangular building at height z can be calculated as follow: 

2/12

,

2

,

2

,

2

, ))()(()( zFgzFgzW RLRLBLBLL                                                                      (5) 

The background part of the fluctuating wind load FL,B(z) at height z is calculated according to the following 

equation: 

      DzCHqF LLBL )()(,                                                                                             (6) 

The resonant part of the fluctuating wind load FL,R(z) at height z is calculated according to the following 

equation: 

 
2/1

, )4/)(()/)(/1)(12()(  
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L
                                                 (7) 

where CL(z) is the fluctuating lift coefficient at height z; λL is the space correlation correcting factor for CL(z); 
and SFL(fa) is the normalized acrosswind lift force spectrum value corresponding to the natural frequency of a 

structure in acrosswind direction. 

The torsional design wind load WT(z) for a rectangular building at height z can be calculated as follow: 

2/12

,

2

,

2

,

2

, ))()(()( zFgzFgzW RTRTBTBTT                                                            (8) 

The background part of the fluctuating torsional wind load FT,B(z) at height z is calculated according to the 
following equation: 

BDzCHqF TTBT )()(,                                                                           (9) 

The resonant part of the fluctuating torsional wind load FT,R(z) at height z is calculated according to the 

following equation: 

     
2/1

, )4/)(()/)(/1)(12()(  
tFTRT fSfHzHzF

T
                                   (10) 

where CT(z) is the fluctuating moment coefficient at height z; λT is the space correlation correcting factor for 

CT(z); and SFT(ft)  is the normalized torsional wind force spectrum value corresponding to the natural frequency 
of a structure in torsional direction. 

4. Estimations on Functions and Parameters 

Artificial neural networks (ANNs) were used to estimation the wind force coefficients and spectral values 

required for using the wind load calculation equations in the above section.  In terms of wind force coefficient 
estimation, neural networks were used to train, simulate and forecast wind coefficients using terrain exposure, 

side ratio and aspect ratio as inputs. The neural networks investigated include BP (Back Propagation), RBF 

(Radial Basis Function) and GR (General Regression) neural networks. According to our evaluation, RBFNN 

has the best results [7]. The network architectures shown in Figure 2 are our current alongwind force coefficient 
modification schema. 
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Fig. 2: The ANN Schema for Alongwind Force Coefficient Prediction 

For predicting the wind force spectra of high-rise buildings under specific conditions, usually the known 

values are: terrain exposure, aspect ratio and side ratio. The intended output is the spectrum value at a particular 

non-dimensional frequency. After extended study of using ANNs to predict wind force spectra [8], the following 
conclusions have be reached. Alongwind, acrosswind and torsional spectra should be trained independently 

owning to the different characteristics among them. After numerous trials, Radial Basis Function Neural 

Networks (RBFNN) was selected and the network architecture (see Figure 3) finally set with four neurons, 
terrain exposure, aspect ratio, side ratio and non-dimensional frequency for the input layer, and one output, the 

spectrum value of the corresponding frequency. A fixed Gaussian function was used in our RBFNN. For the 

wind load calculation procedure presented in this paper, alongwind spectrum is not required. Therefore, a total of 

12 ANNs were trained for acrosswind spectra, and another 12 ANNs are required to estimate torsional spectra. 

 

 

 

 

 

 

 

 

 

Fig. 3: The ANN Schema for Wind Spectrum Prediction 

To ease the burden of using the above mentioned design wind load analysis model, all the equations, 
functions, and ANNs are coded in Matlab. A friendly user interface is warp around the programs to form a 

software package. Two versions of the software are provided, a PC and a web version. Shown in Figure 4 are 

Web Pages for the Aero-Data Based Wind Load Analysis System. 
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Fig. 4: Web Pages for design wind loads of tall buildings (http://dbwl.wind.org.tw/en) 

5. Cases Study 

The proposed alongwind design wind load model is compared with design wind load calculated based on the 
time domain analysis of the wind tunnel measured wind loads. Prototype rectangular shaped buildings of side 

ratio, D/B=1/5, 1/3, 1/1, 3/1, 5/1, with aspect ratio H/ BD =3, 6, were used for the comparative studies. All 

buildings have the same cross-sectional area, A=900m
2
, i.e., the building heights are, H=90m and 180m. The 

building density is 276 kg/m
3
 and the structural damping is 0.01. The stiffness was adjusted so that the 

fundamental periods of the test buildings roughly equals to 1/10 of the building stories. Linear mode shape, 

β=1.0, was used for the proposed model. Shown in Figures 5, 6 and 7 are the comparisons of design wind loads 

calculated from the present model and design wind loads obtained based on the time domain analyses of 

applying one hour wind load time history on building finite element models. Generally speaking, the predictions 
from present model are in good agreement with the results from time domain analysis. The differences between 

two schemes may come from the following sources:  

(1) Aerodynamic assumptions in proposed model, 

(2) Linear mode shape used in proposed model is different from the FE model 

(3) Linear interpretation scheme used to deploy wind load time history to FE models may cause error in the 
force spatial correlations, and 

(4) Inherent random nature in time domain analysis. 
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Fig. 5: Comparisons of alongwind base shear between present model and time domain analysis (○BL-A  □BL-B  △BL-

C) 

 

 

 

 

 

 

 

Fig. 6: Comparisons of acrosswind base shear between present model and time domain analysis (○BL-A  □BL-B  △BL-

C) 

 

 

 

 

 

 

 

Fig. 7: Comparisons of base torque between present model and time domain analysis (○BL-A  □BL-B  △BL-C) 

The present design wind load models were then compared with current building wind code which the 

alongwind load is similar to ASCE7 and the acrosswind and torsional wind loads are adopted from AIJ 

recommendations.  For alongwind design wind loads,  comparing to the proposed model, the  current Taiwan 

building wind code (similar to ASCE7) is at least 20% over-estimated in open country terrain; slightly under-

estimated in suburban terrain; significantly under-estimated in urban terrain. For the acrosswind design wind 

load, Taiwan wind code (similar to AIJ recommendation) is overestimating in open country terrain especially for 

shallow and tall buildings; in good agreement with present model in suburban terrain for buildings with aspect 

ratio 1 and above; significantly under-estimated in urban terrain. With regard to torsional design wind loads, the 

comparisons are as follows: for aspect ratio 3, Taiwan wind code (similar to AIJ recommendation) always 

underestimates the torsional wind loads; for aspect ratio 6, wind code usually overestimates the torsional wind 

loads. 

6. Conclusions 

WERC at TKU has been working on tall building aerodynamic databases for many years. The work reported 

here expanded the existing aerodynamic database to a much broader building geometric range: H/ BD = 1 to 7 
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and B/D=1/5 to 5/1. A wind load analysis model was developed based on the established database. To reduce the 

complexity of calculation, the tedious and complex integrations in the wind load procedures were replaced by 
pre-calculated functions and parameters, which shorten the computer time from 4-5 minutes to less than 20 

seconds. Extra efforts were put to improve the multi-variable regression and ANN models used in wind load 

procedures to retrieve and adjust the wind loads parameters from the aerodynamic database. A stand-alone PC 

program and an Internet-based web application with user-friendly interface and build-in design wind load 
procedures were then built so that the building designer can acquire the design wind loads handily.  

Comparing with the results of time domain analysis using wind tunnel time histories and the present design 
wind load models exhibited satisfactory accuracy. The present design wind load models were then compared 

with current building wind code. The significant differences shown in the comparing cases suggested that the 

current building code tends to underestimate the alongwind and acrosswind loads in the terrain category A; 
overestimate both wind loads in terrain category C. For building aspect ratio less than 3, building wind code 

significantly underestimate torsional wind load in both terrain categories A and B. In short the current building 

wind code has its limitations needs to be improved in the future. 
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