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EXTENDED ABSTRACT 

The artificial neural network (ANN) with Taguchi-

genetic evolutionary algorithm (TGEA) is combined to 

construct the steel bar model and optimize the factors of 

steel bar. The TGEA in the ANN is to find the most suitable 

weight of neuron combination and the optimal combination 

of influencing factors. In the experiment, the steel bar 

model is constructed by the TGEA-based ANN, and the 

TGEA is utilized to optimize all process parameters. 

In recent years, steel bars have been widely used in 

buildings and bridges. However, corrosion attack in 

reinforcing steel bars often causes early deterioration and 

failure of concrete structures. Therefore, the resistant of 

earthquake of steel bars becomes an important issue. 

Recently, due to the development of computational 

intelligence techniques, the ANN has been successfully 

applied in the many fields [1-3]. The TGEA was first 

proposed by Tsai et al. [4], and was confirmed as a useful 

tool for parameter design optimization of engineering 

problems [5]. The TGEA explores the best settings of 

parameters combination and improves the performance 

characteristic by using orthogonal array and signal-to-noise 

ratio [6]. 

The chemical composition is the key technology of the 

steel bars, but traditional steel bar manufacture process is 

followed by the setting procedure and the experience of 

engineer. However, the Chinese national standards 560 

(CNS560) stipulate the important chemical composition of 

steel bars including carbon, silicon, manganese, 

phosphorus, sulfur, and carbon equivalent. Cadoni et al. [7] 

and Sato et al. [8] indicated that the compositions affect the 

yield point (YP) and tensile strength (TS) such as carbon, 

sulfur, phosphorus, silicon, manganese, carbon equivalent, 

copper, etc. Fig. 1 shows the relationship between YP and 

TS for steel bars. 

In this study, the proposed TGEA-based ANN combines 

the three-layer five-hidden-node ANN and the TGEA to 

construct the model for the chemical composition of steel 

bar. Ten chemical composition are the carbon (C%), silicon 

(Si%), manganese (Mn%), phosphorus (P%), sulfur (S%), 

copper (Cu%), nickel (Ni%), chrome (Cr%), molybdenum 

(Mo%), and vanadium (V%) as the inputs of TGEA-based 

ANN for CCSB, and two outputs are YP (kgf/mm2) and TS 

(kgf/mm2). The YP and TS are transformed to the single 

value according to the characteristic of larger-the-better, 

shown in Eq. (1). The output value of the ANN is regarded 

as the fitness function of the TGEA in the study. 
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Each input value is normalized before importing its 
value into the training process. The data are applied to 
evaluate the performance of TGEA-based ANN. For each 
output, the training process seeks for the smallest root mean 
squared error  (RMSE), which can be represented as 
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where n indicates the number of training data items, Rm is 
the actual output value, and Om denotes the predicted output 
value.  

The practical application of the proposed method was 

demonstrated in the engineering design problem of CCSB. 

In the experiment, 800 data are used for training the 

TGEA-based ANN model, and 200 data are used for 

testing the performance of the model. Table I shows the 

data range of the input values of training and test data. The 

performance evaluation indexes for mechanical properties 

are YP and TS. Table II shows the average RMSE of 

training data and test data obtained by conventional BP and 

the TGEA-based ANN for building the model of CCSB. 

Finally, the TGEA was used to optimize values of ten 

inputs. The major contribution of this study is to use the 

TGEA approach to enhance the data training ability of 

three-layer ANN for CCSB. Therefore, for designing 

chemical composition of steel bar, the proposed TGEA-

based ANN is a useful tool for engineering problem 

optimization. 

Acknowledgement 

This work was supported in part by the Ministry of 

Science and Technology, Taiwan, R.O.C., under Grant 

Numbers NSC 102-2221-E-151-021-MY3, NSC 102-2217-

E-151-001-MY3, and MOST 103-2221-E-153-004-MY2. 

References 

[1] J. A. Abdalla and R. Hawileh, “Modeling and simulation of low-

cycle fatigue life of steel reinforcing bars using artificial neural 

network,” Journal of the Franklin Institute, vol. 348, pp. 1393-1403, 

2011. 

[2] J. Ghaisari, H. Jannesari, and M. Vatani, “Artificial neural network 

predictors for mechanical properties of cold rolling products,” 

Advances in Engineering Software, vol. 45, pp. 91-99, 2012. 

[3] E. M. Golafshani, A. Rahai, M. H. Sebt, and H. Akbarpour, 

“Prediction of bond strength of spliced steel bars in concrete using 

artificial neural network and fuzzy logic,” Construction and 

Building Materials, vol. 36, pp. 411-418, 2012. 

[4] J. T. Tsai, T. K. Liu, and J. H. Chou, “Hybrid Taguchi-genetic 

algorithm for global numerical optimization.” IEEE Trans. on 

Evolutionary Computation, vol. 8, pp. 365-377, 2004. 

[5] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and 

parameters of a neural network by using hybrid Taguchi-genetic 

algorithm,” IEEE Trans. on Neural Networks, vol. 17, pp. 69-80, 

2006. 

[6] H. H. Lee, Taguchi Methods: Principles and Practices of Quality 

Design. Taiwan: Gau-Lih, 2011. 

[7] E. Cadoni, L. Fenu, and D. Forni, “Strain rate behaviour in tension 

of austenitic stainless steel used for reinforcing bars,” Construction 

and Building Materials, vol. 35, pp. 399-407, 2012. 

[8] K. Sato, Q. Yu, J. Hiramoto, T. Urabe, and A. Yoshitake, “A method 

to investigate strain rate effects on necking and fracture behaviors of 

advanced high-strength steels using digital imaging strain analysis,” 

International Journal of Impact Engineering, vol. 75, pp. 11-26, 

2015. 

[9] AIST, “The relationship of yield point for steel bars,” 

http://www.monozukuri.org/mono/dbdmrc/press/text/text09.htm, 

2015 

[10] SOGOU, “The relationship of tensile strength for steel bars,”  

http://baike.sogou.com/v420117.htm, 2015. 

 

Figure 1. The relationship of yield point and tensile 

strength for steel bars [9][10]. 

 

Table I. Range of input values of training and test data. 

Parameter 
Range 

Min.    Max. 

C (%) 0.1903 0.2478 

Si (%) 0.0509 0.1995 

Mn (%) 0.6000 0.7975 

P (%) 0.0165 0.0488 

S (%) 0.0700 0.0484 

Cu (%) 0.1699 0.4486 

Ni (%) 0.0584 0.1496 

Cr (%) 0.0842 0.2454 

Mo (%) 0.0118 00587 

V (%) 0.0030 0.0078 

 

Table II. Comparison of root mean square error (RMSE) 

for conventional BP and TGEA-based ANN in building the 

model for the chemical composition of steel bar. 

Model 

RMSE 

Training data set Test data set 

TS YP TS YP 

Conventional 

BP 
1.5400 1.4000 2.2551 1.8305 

TGEA-based 

ANN 
1.4839 1.2101 2.1723 1.6769 

 


