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Abstract 

When a radio access network (RAN) environment cannot handle the tremendous 

mobile data traffic, users may experience degraded or declined services. To help process 

the large number of user video requests in RANs, a content delivery network (CDN) 

architecture has been recently introduced, which establishes a number of cache servers 

outside the source server for users to get the needed data from the nearest cache server. 

To upgrade the performance of a wireless CDN, this paper presents a new caching 

strategy based on analytical results of real user video request traces and specific caching 

considerations for videos with different popularity degrees. The new strategy first caches 

videos with high popularity to all helpers and then caches those with low popularity to the 

remaining helper storage to enhance the overall request hits. Performance evaluation 

exhibits that, when compared with other caching strategies, our new strategy is able to 

yield better request hits with low complexity and average delay time. 

 

Keywords: Content delivery networks (CDNs), radio access networks (RANs), caching 

strategies, video request hits, complexity, delay, experimental evaluation 

 

1. Introduction 

According to the visual networking index [1] released by Cisco, the average monthly 

global mobile data traffic was 1.5 EB in 2013 and will grow up to 15.9 EB in 2018 with 

about 70% of it coming from video traffic data. By that time, the radio access network 

(RAN) environments (as shown in Figure 1) will have very serious problems absorbing 

the estimated huge growth of mobile data traffic. In fact, the trouble may emerge earlier in 

2017 as Strategy Analytics has forecasted. When it happens, users may experience 

degraded or even declined services because the base station in RANs will have difficulties 

handling the large number of user video requests [2]. If viewing the base station as a 

server, we can thus describe the foreseeable problem: A single server may fail to manage 

too many user requests and will then respond to these requests with extra delay time. To 

solve the incoming problem, some researchers have recently introduced the content 

delivery network (CDN) architecture [3-5] to assist the practice of RANs. 

In the CDN architecture, a number of cache servers are established outside the source 

server. The source server then caches its contents to the cache servers so that users, when 

filing requests, can get the needed data from the nearest cache server. Such a practice can 

increase the delivery speed and reduce the burden on the source server. The performance 

of CDN architectures is subject to a proper caching strategy by which the source server 

can decide how to set up desirable cache servers and to cache what contents to them. A 

number of caching strategies have been proposed for the CDN architecture, including [6-

15]. For instance, to facilitate the performance of a wireless CDN architecture, the 

Greedy strategy [6-7] creates several cache nodes (the so-called helpers) in a single cell. 

It faces a major problem: When the video volume grows much bigger than the cache 
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storage of helpers, the strategy can only cache the videos with high popularity. For the 

considerable number of videos with low popularity, it will turn over very limited user 

request hits. 

 

 

Figure 1. An Illustration of the Radio Access Network (RAN) 

The main goal of this investigation is to enhance the practice of RANs by building a 

new caching strategy over the wireless CDN architecture. Different from the Greedy 

strategy, our new caching strategy analyzes the real user video request traces and, based 

on the results, adopts different approaches to handle videos with different degrees of 

popularity. Our basic idea is to cache videos with high popularity to all helpers first and 

then cache those with low popularity to the remaining storage (if the total storage of 

helpers is not full). By doing so, we can effectively lift up the request hits of those less 

popular but numerous videos.  

Extensive simulation runs are conducted to evaluate the performance of our cache 

strategy and other CDN cache strategies, including the Greedy [6, 7], Popular [7], and 

Fuzzy Decision [8] strategies. The obtained results show that, when the cache storage of 

helpers goes below 50% of the total videos (i.e., with limited helper cache storages), the 

Greedy strategy attains only few hits for the big number of less popular videos. The 

Popular strategy is shown to yield much lower request hits because it caches only those 

highly popular videos, and the Fuzzy Decision strategy misses even the requests of highly 

popular videos because it does not consider video popularity at all. By contrast, our new 

strategy performs following the real user request traces and therefore is able to achieve 

higher request hits with lower complexity. We also use the widely applied LTE-sim [16-

19] to simulate these target strategies and obtain the average video download delay time 

per user, with the advantage to our strategy as well. 

 

2. The Proposed Strategy 

When caching a video, the Greedy strategy must ensure that each user can find the 

video in a nearby helper. But, it is difficult to predict accurately which user will make a 

request in which position and, meanwhile, wrong user location predictions will bring up 

huge impact. If users are evenly distributed, the strategy needs to cache every video to 

most of the helpers. On the other hand, if the video volume largely exceeds the total 

helper storage, helpers can cache only limited videos. In such a situation, the Greedy 

strategy which has attempted to handle most user requests by nearby helpers will have to 

leave a significant amount of requests untended. To solve the problem, we build a new 

caching strategy based on the analytical observations of real user request traces to 

increase the probability of having helpers handle user requests, i.e., to increase the user 

request hits. 

To facilitate our investigation, we examine the traces of the YouTube requests 

extracted from the wired campus network, between the second half of 2007 and the first 
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half of 2008, at the University of Massachusetts at Amherst [20-21]. Table 1 gives one 

example of these request traces. 

Table 1. The Trace of a YouTube Request 

Timestamp 
YouTube 

server IP 
Client IP Request Video ID Content server IP 

1189828805.208862 63.22.65.73 140.8.48.66 GETVIDEO lML9dik8QNw 158.102.125.12 

 

We take the number of requests for each video as its popularity and observe that, 

each day, the average user requests for videos with higher popularity (i.e., with 

more requests) stands about 30% of the total requests. We also observe that, when 

removing these 30% more popular videos, the remaining 70% videos exhibit little 

popularity differences. To facilitate our later discussions, we now define those more 

popular videos as popular videos and the rest as non-popular videos. 

Assume that there are N videos and the popularity (i.e., the number of requests) 

of video i is Pi. We first accumulate the popularity of the N videos in set S, in 

descending order, i.e., Pi-1>= Pi. 

𝑆 = {𝑃1, 𝑃2, … , 𝑃𝑁} 
Asmentioned previously, the requests forpopular videos stand about 30% of the 

total video requests. We can thus definethe total requestsfor popular videos (denoted 

as Ppopular) as 

𝑃𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑃𝑖
𝑁
𝑖=1   

 𝑃𝑝𝑜𝑝𝑢𝑙𝑎𝑟 =  𝑃𝑡𝑜𝑡𝑎𝑙 × 30% 

With the above definitions, we can start our first phaseof operation: caching all 

popular videos to all of the helpers. Figure 2 gives the details of the caching flow. 

 

 

Figure 2. The Flow Chart of the First Phase: Caching Popular Videos 
to All Helpers 

In Figure 2, 𝑃𝑠𝑢𝑚 (initially 0) indicates the total popularity of the cached videos. 

When 𝑃𝑠𝑢𝑚 remains below 𝑃𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , cache the next popular video to all helpers; 

repeat the same operation until the caching storage of all helpers is full 

or𝑃𝑠𝑢𝑚equals/exceeds𝑃𝑝𝑜𝑝𝑢𝑙𝑎𝑟. 

If the cache storage of helpers is not used up after the first phase, we will start the 

second phase of operation. Assuming that we have cached H videos out of the total 
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N videos, H<N, to all helpers in the first phase, we now have the following 

𝑆𝑛𝑜𝑛−𝑝o𝑝𝑢𝑙𝑎𝑟 (the N-H non-popular videos) set  

𝑆𝑛𝑜𝑛−𝑝𝑜𝑝𝑢𝑙𝑎𝑟 = {𝑃𝐻+1, 𝑃𝐻+2, … , 𝑃𝑁−1, 𝑃𝑁} 

As the analytical results of the YouTube requests exhibit little popularity 

differences for non-popular videos, we thus evenly distribute these non-popular 

videos to the helpers without considering the popularity. If we assume all videos are 

with the same size and each helper has the cache storage for K videos, we will attain 

the total cache storage of M helpers as 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡𝑜𝑡𝑎𝑙 =  𝑀 × 𝐾  𝑣𝑖𝑑𝑒𝑜𝑠 
Excluding the H videos which have been cached in the first phase, we now have 

the following remaining cache storage  

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 𝑀 × (𝐾 − 𝐻)  𝑣𝑖𝑑𝑒𝑜𝑠 

That is, we can distribute the remaining non-popular videos to the helpers 

according to the obtained 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑢𝑟𝑝𝑙𝑢𝑠 . Figure 3 depicts the flowchart of our 

second phase of operation. 

 

 

Figure 3. The Flow Chart of the Second Phase: Caching Non-Popular 
Videos 

In Figure 3, Num indicates the quotient of the remaining cache storage divided by 

the total number of non-popular videos; each non-popular video hence can be 

cached to Num helpers. For a non-popular video i, 𝑖 = 𝐻 + 1, 𝐻 + 2, … , 𝑁 −
1, 𝑁.Whena video (starting from 𝐻 + 1) is cached to the Num helpers randomly, the 

remaining cache storage will be decreased until the𝑁 − 𝐻 videos are all cached or 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑢𝑟𝑝𝑙𝑢𝑠is used up.  

To sum up, the proposed caching strategy adopts different approaches to handle 

popular and non-popular videos. In the first phase, it caches the popular videos -- 

one by one, in the order of popularity -- to all helpers until using up the helper 

storage or the popular videos. This is a different approach in contrast to the Greedy 

strategy which starts by caching each video to most of the helpers and consequently 

occupies too much helper storage in the beginning. By caching popular videos, 

instead of all videos, in the beginning, we can practically save storage and ensure 

helpers to come up with proper request hits. Such a design can also avoid the 

loophole of the Fuzzy Decision strategy. (Note that helpers in the Fuzzy Decision 

strategy may fail to handle quite a few popular requests as it will randomly cache 
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videos several times and select the best result without considering popularity 

degrees.) 

After the practice of the first phase, if the helpers still have cache storage, our 

strategy will start the second phase of operation. As the above trace analysis of the 

YouTube requests shows little popularity difference for non-popular videos, our 

strategy evenly distributes these non-popular videos without considering the 

popularity to the helpers in the second phase. Our key consideration in this phase is 

to cache possibly more non-popular videos to the helpers. By doing so, we can 

further enhance the request hits, given that most of the video requests are for non-

popular videos (e.g., 70% in the above You Tube case). Unlike the Greedy strategy 

which caches very few non-popular videos or the Popular strategy which caches 

only popular videos, our strategy can cache significantly more non-popular videos 

to the helper (so as to increase the request hits), thanks to its second-phase practice. 

Our strategy is relatively simple because it deals with the popularity degrees of 

videos only, not involving user location predictions as the Greedy strategy. For 

better understanding we list critical features of different caching strategies in Table2. 

Table 2.Critical Features of Different Caching Strategies 

 
 

3. Experimental Evaluation 

 
3.1. The Simulation Environment 

To evaluate the performance of our new caching strategy (ours) and other related 

strategies, including the Greedy, Popular and Fuzzy Decision strategies, we carry 

out extensive simulation runs in a created single cell of the RAN environment with a 

number of helpers as Figure 4 depicts. We pick up user request traces by randomly 

selecting from the You tube requests (specified in the previous section) which had 

been filed during the four hottest hours (i.e., hours with the most incoming 

requests)on January 29, 2008:a total of 5252 requests filed for 3888 different videos. 

Each requested video is assumedly with resolution = 640 × 360, video length = three 

minutes and video size = 30MB. To attain fair simulation, we suppose the popularity 

of each video is known in advance and meanwhile follow the environment settings 

of the Greedy strategy in[7] --with cell radius = 400 meters and a random set of 

helpers in the cell = 32.The performance of the four target strategies is collected and 

compared in terms of video request hits and complexity. (Note that our simulation 

involves LTE- sim [16] to obtain the average delay each user takes to download a 

video.) 

 

  Greedy Popular 
Fuzzy 

Decision 
Ours 

Environment wireless wireless wired wireless 

Popularity 

information 
required required not required required 

Users‘ positions required not required required not required 
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Figure 4.The Simulation Environment 

We build the helper’s model like the Greedy strategy. The connections between 

the helpers and users are Wi-Fi-like D2D (device-to-device) communications [7], 

and the transmission speed between the helpers and users is assumed by using 

802.11n [22]. Table3 gives related parameters for the helper’s model.  

Table 3. The Helper’s Model 

 

Table 4 gives related parameters of the base station and channel models. We use 

the LTE-sim with the following parameters to simulate the environment of 

3GPPSpecificationsRelease 8. 

Table4. The Base Station and Channel Models 

 
 

3.2. Simulation Results 

 

3.2.1. Video Request Hits vs. the Helper Storage 

To see how helper storage relates to the video request hits, we carry out 

simulation runs with different volumes of helper storage ranging from 30GBs to 

90GBs. Figure 5depicts the numbers of video request hits versus the helper storage 

(in GBs) for different strategies. As we can see, when the helper storage is small, 

the Popular strategy yields fewer video request hits because it caches only the 

popular videos. For the Fuzzy Decision strategy which considers no popularity 

degrees of the videos, increasing the helper storage does not distinctly increase the 

request hits. It yields better request hits than Popular only at smaller cache storage 

(likely because of caching more different videos). Our strategy depicts the best hits 

between cache storage 30~60GB because we heed not only the hits for popular 

videos but also that for the non-popular videos. The Greedy strategy generates more 

Parameter value 

bandwidth 15MHz 

subcarrier spacing 15kHz 

number of subcarriers per OFDM symbol 12 

slot duration 0.5ms 

scheduling time (1 TTI) 1ms 

schedulers proportional fair(PF) 

Path Loss Model For Urban Environment L = 128.1 + 37.6*log10 d 

 

 

 

 

Parameter value 

helper range 100m 

data rate(Mbps) R = 3 + (4/100) * (100 - d) 
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desirable video hits than our strategy between cache storage 60~90GB, mainly 

because it can follow user location predictions to make sure videos be cached in the 

neighboring helpers when there is sufficient helper storage. 

 
Figure 5. Video request hits vs. the helper storage (GBs). 

Figure 5. Video Request Hits vs. the Helper Storage (GBs) 

Note that the 5252 video requests covered in our simulation are the accumulated 

requests in four consecutive hours, each respectively having 824, 1457, 1732 and 

1239 requests. Figure 6 exhibits the accumulated request hits of the four hours with 

helper storage = 30GB (where n in the x-axis indicates the first n hours). The results 

show that, for the Popular strategy, users make requests for popular videos mainly 

in the first two hours (which have more focused accumulated request hits). In the 

last two hours, we can see more sporadic non-popular videos have been requested. 

Our new strategy, by contrast, enables the request hits to grow continuously even 

during the last two hours. This happens because we endeavor to raise the request 

hits for both the popular and non-popular videos. The Greedy strategy displays 

quite leveling performance during the final hour, a result of yielding lower hits for 

non-popular video requests. 

 

 

Figure 6. Accumulated request hits vs. time (hrs) (30GB helper) 

Figure 7 depicts the accumulated request hits of the same four hours, with 60GB 

helper storage which is able to cache about 50% of the total videos. With 60GB 

helper storage, the Greedy strategy can upgrade its request hits to catch up with our 

strategy, because it has bigger helper storage to cache more videos and is with the 

assistance of user positions.  As for the Popular strategy, we can see it attains better 

request hits for the first two hours because users make more requests on popular 

videos during that period of time. The result also reveals that the request hits for the 

Fuzzy Decision strategy display the same developing trend as that for our strategy, 

but the Fuzzy Decision strategy constantly yields lower request hits than our 

strategy because it does not take the popularity of videos into account.  
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Figure 7. Accumulated request hits vs. time (hrs) (60GB helper). 

Figure 8exhibits the accumulated request hits of the above four hours with 90GB 

helper storage which can cache about 80% of the total videos. When the helper 

storage grows to 90GB, each helper will be able to cache most of the videos. In such 

a situation, the Greedy strategy turns over higher request hits than our strategy 

with the aid of user positions. That is, when the helper storage grows bigger, 

caching more kinds of videos (popular or non-popular) turns less significant. It 

helps explain why, in Figure 8, our strategy trails behind the Greedy strategy in 

request hits. However, as mobile data traffic will grow tremendously in the future 

(mentioned in the beginning of Section 1), it will be impossible for a helper to cache 

over 50% of the total videos by that time because, to do so, a helper will need 

extremely massive caching storage which may group to hundreds of GBs. With 

hundreds of GBs storage, we can foresee escalating transmission delay due to a lot 

of factors, including cache update. In view of this prospect, caching strategies 

should be designed for practice in reasonable environments, i.e., when helpers are 

with more reasonable caching capability.  

 

Figure 8. Accumulated Request Hits vs. Time (hrs) (90GB Helper) 

 

Figure 9. Video Request Hit Rates vs. the Helper Caching Capability 
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3.2.2. Video Request Hits vs. the Helper Caching Capability 

Figure 9 gives that result of video request hits versus the helper caching 

capability. It further illustrates the advantage of our strategy, that is, when helpers 

are with reasonable caching capability, our special design out of the popularity 

degrees of videos can ensure more desirable performance in request hits. Note that 

the helper caching capability in Figure 9 indicates the percentage of total videos 

each helper can cache and the request hit rate indicates the number of request 

hits/the number of total requests. As we can see, our strategy yields higher request 

hit rates when the helper caching capability is under about 50% -- which is the more 

reasonable case. 

 

3.2.3. Computational Complexity 

Figure 10 gives computational complexity denoted by the number of lookups in 

the helper storage, such as the lookup for a requested video or the lookup to see if 

the helper storage is full upon caching a video. The result shows that the complexity 

of the Popular strategy equals the total number of videos to be cached by the 

helpers, and that our strategy (which randomly caches the non-popular videos) 

produces slightly higher complexity than the Popular strategy. It also shows that 

the Fuzzy Decision strategy produces higher complexity than Popular and our 

strategy because it needs 10 runs of random caching before reaching caching 

decisions. Among all strategies, the Greedy strategy takes the most complexity 

because it needs to search all user locations in order to decide on the appropriate 

helper for caching each of the videos.  

 

 

Figure 10. Complexity vs. Helper Storage 

3.2.4. Average Delay Time 

In the simulation, we also use LTE-sim and the helper model to simulate the average 

delay time for a user to download a video by the strategies. The average delay time will be 

attained by the following steps: 

(1) Use LTE-sim to simulate delay time for a user to download one video from the 

base station. 

(2) Use the helper model to calculate the delay time for a user to download one video 

from the helper. 

(3) Average the sum of the above two delay times to get the estimated average delay 

time. 

The result of the average delay versus the helper storage is plotted in Figure 11. Note 

that the Baseline strategy in this simulation assumes all requests are served by the base 

station, i.e., it uses no wireless CDN architectures. As the result illustrates, each strategy-- 

except Baseline can shorten the delay time in a trend corresponding to the results of 

 



International Journal of Future Generation Communication and Networking 

Vol. 8, No. 2 (2015) 

 

 

18                                                                                                                 Copyright ⓒ 2015 SERSC 

request hits in Figure 5. In fact, the undesirable result of the Baseline strategy helps prove 

the feasibility of using wireless CDN architectures to deal with the problems which will 

confront the RAN sin the near future. 

 

 

 

Figure 11.The Average Delay vs. the Helper Storage 

4. Conclusions 

Considering that the radio access network (RAN) environments will face very serious 

challenges in managing colossal growth of mobile data traffic in the near future, a content 

delivery network (CDN) architecture has been proposed to assist the practice of RANs. 

The CDN architecture sets up a number of cache servers outside the source server which 

then caches its contents to them. When a user files requests, it can get the needed data 

from the nearest cache server to increase the delivery speed and reduce the burden on the 

source server. A proper caching strategy is therefore critical to the performance of CDN 

architectures as it helps decide how to set up desirable cache servers or to cache what 

contents to them. To facilitate the performance of a wireless CDN architecture, this paper 

introduces a new caching strategy based on the analytical results of real user video request 

traces. The new strategy adopts different caching approaches to handle videos with 

different degrees of popularity. It first caches videos with high popularity to all helpers 

and then those with low popularity to the remaining storage. The special design helps 

increase the request hits of those less popular but large-numbered videos and upgrade the 

overall performance of a CDN. Experimental evaluation shows that, in contrast to related 

strategies, our new caching strategy is able to achieve higher request hits with 

significantly lower complexity and average delay time. 
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