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1. BIOMASS TO GASOLINE (iGASOLINE) 

 
This is a collaborative work of several universities and the research institute INER (http://www.iner.gov.tw) 
of Taiwan. The goal is to develop the key technologies to converting biomass to gasoline (iGasoline). The 
framework is depicted in Fig. 1. The iGasoline project consists of torrefaction, plasma gasification, gas 
cleaning system, syngas refining system, one-step direct dimethy ether (DME) production, and biogasoline 
production. The first phase of the iGasoline project is the integrated process synthesis and design of plasma 
gasification of biomass to syngas (BtS), direct synthesis of syngas to DME (StD) and  DME to gasoline 
(DtG). The second phase of the iGasoline project is the development of catalysts used in the DME reactor 
and the biogasoline reactor. The third phase of the iGasoline project is the construction of pilot plant. We 
will present the results of the first phase in this symposium. Engineering economic analysis associated with 
the syngas to gasoline (StG) is also presented. 
 
1.1 P lasma Gas i f i ca t i on  o f  B iomass  to  
Syngas  (B tS)  

 
The CO2-plasma torch jet will provide a homogeneous temperature of about 1000

o
C to all fractions of the 

syngas. This results in a complete dissociation of all hydrocarbons, even halogenated, with no indication of 
recombination. There are no toxic nor carcinogenic organic compounds present in the produced fuel gas 
because no such compounds can survive at this temperature. This means no formation of volatile organic 
compounds (VOCs) such as dioxins and furans as are found with other technologies. The goal is to 

produce syngas with a composition of H2：CO：CO2 = 2：1：0.25. 
 
1.2 D i rec t  Syn thes is  o f  Syngas  to  DME 
(S tD)  

  
In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a 
study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are 
found: (1) CO2 + H2 ＝ H2O + CO, (2) CO + 2H2 = CH3OH, and (3) 3CO + 3H2 = (CH3)2O + CO2. To gain an 

insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-
constant method and the minimization of Gibbs free energy (Chen, 2012).   
 
1.3 F rom D ME to  Gas o l ine  (D tG)  

 
Just as methanol can be converted into gasoline boiling-range hydrocarbon over zeolite ZSM-5 catalyst, 
the Mobil MTG process (Packer, 2005), DME results in an identical hydrocarbon distribution over the ZSM-

5 catalyst. The conversion of DME to biogasoline and water is: (CH3)2O → [CH2.CH2] + H2O, where 

[CH2.CH2] is the average composition of the hydrocarbon product (Lee et al., 1995). Our research team 
currently works on the performance improvement of the ZSM-5 catalyst for the biogasoline production. 
 
 

2. PROCESS SYNTHESIS AND DESIGN 
 

2.1 F rom B iomass  to  Syngas  (B tS)  
 
On the basis of 10,000 tonnes per year of biogasoline production, the integrated block flow diagram is 
depicted in Fig. 2. The process flow diagram of BtS is shown in Fig. 3. 
 
 

 



2.2 F rom Syngas  to  Gaso l ine  (S tG)  
 
The process flow diagram (Fig. 4), is the final configuration which combines the pinch technology with the 
base-case design for heat exchanger network synthesis in order to compare the energy consumption and 
capital costs of the process with/without heat integration. Two kinds of software were used in the research—
Aspen Plus (Aspen Tech., 2011) and SuperTarget (KBC, 2010). The former was used to implement the 
process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the 
synthesis of heat exchanger network. A cash flow diagram for the StG process is shown in Fig. 5 by using 
the economic parameters listed in Table 1. 
 

3. CONCLUSION 
 

1. We have described the highlights for the collaborative research on the “iGasoline” project. 
2. We have presented a process synthesis and design with a goal of 10,000 tonne/per year of biogasoline 

 for the “iGasoline” project. 
3. We have also conducted an engineering economic analysis for the process of syngas to gasoline (StG). 
 
 

 
Fig. 1. The framework of Biomass to Gasoline—iGASOLINE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Integrated Block Flow Diagram for the iGASOLINE Project. 
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Fig. 3. Process Flow Diagram of BtS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Process Flow Diagram with Heat Integration of StG. 
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Fig. 5. Cash Flow Diagram of the StG Process. 
 
 

Table 1 Economic assumptions for discounted cash flow analysis. Working capital and Cost of land are 
recovered at the end of project life. 

 

 
Parameter Value  

Land US$10x10
6
 

Fixed capital investment during year 1 60% of total fixed capital investment 
Fixed capital investment during year 2 40% of total fixed capital investment 

(Plant start-up at end of year 2)  
Working capital 20% of total fixed capital investment 
Taxation rate 17% 

Annual interest rate 
Savage value of plant 

2% 
10% of total fixed capital investment 

Depreciation  7-year MACRS 
Project life  20 years 
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