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ABSTRACT 
 

 In this paper, the optimal design of a progressively group-censored life test with the 

restriction of experimental budget is developed for the Chen distribution is considered. 

The maximum likelihood estimates, approximate confidence intervals for the parameters 

based on progressively group-censored sample are obtained. Wu et al.’s (2008a) 

approach is used to determine the number of test units, the number of inspections and the 

length of inspection interval of a life test under a pre-determined budget of experiment 

such that the determinant of the asymptotic variances-covariance matrix of estimators of 

parameters is minimum. A numerical example is presented and the sensitivity analysis is 

also studied. 
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1. INTRODUCTION 
 

 In reliability analysis, an important issue is how to collect the lifetime data of 

products in a limited experimental time and a restricted experimental budget. For saving 

experimental time, censoring is a very common and useful tool. It usually applies when 

the exact lifetimes are known for only a portion of the products and the remainder of the 

lifetimes have only partial information. There are several types of censored life tests. 

Type I and type II are two of the most common censoring schemes. Suppose that n  units 

are placed on a life test. Type I censoring is run over a fixed time period such that beyond 

this time no failures will be observed. This means that the number of exact lifetimes 

observed is random. On the other hand, type II censoring is terminated at the time of the 

m -th ( m n ) failure observed such that n m  partially observed lifetimes are known 

only to exceed certain value. Hence, the termination time is random. Note that, in both 
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type I and type II censoring schemes, surviving units can only be removed at the end of 

the life tests. However, in some practical situations, one has to remove surviving units at 

the points other than the final termination point. This leads us to the area of progressive 

censoring. A recent account on progressive censoring can be found in the monograph by 

Balakrishnan and Aggarwala (2000) or in the review article by Balakrishnan (2007). 
 

 In some situations, it is often impossible continuously to observe the testing process 

and hence, the failure times of test units cannot be recorded exactly. That is, one can only 

record whether a test unit fails in a time interval instead of measuring lifetime exactly. 

Thus, the test units are inspected intermittently. This type of inspection is called  

group-censoring. In the literature, group-censored data have been studied by many 

researchers such as Cheng and Chen (1988), Chen and Mi (1996), Qian and Correa 

(2003) and Lu and Tsai (2009). In recent years, progressive group-censoring scheme has 

received the attention of many researchers. Some important literature can be found, for 

example, Aggarwala (2001), Xiang and Tse (2005), Yang and Tse (2005) and Wu et al. 

(2008b). 
 

 Recently, there has been a heightened interest in improving reliability of products. 

Increasingly intense global competition and higher consumer expectations for reliable 

products are driving this interest. To remain profitable, manufacturers are challenged to 

design and produce high quality and long life products. Therefore, they must have sound 

knowledge about product lifetime distributions. To obtain this knowledge, life testing 

experiments are performed before products are put on the market. 
 

 There are some important questions about how to design an appropriate progressively 

group-censored life test that would results in the optimal estimation of life parameter. 

Important questions include how to determine the number of test units, the number of 

inspections and the length of the inspection intervals. One practical problem arising from 

designing a life test is the limited budget of the experiment. The size of the budget always 

affects the decisions of the number of test units, number of inspections and the length of 

inspection intervals and, hence, affects the precision of estimation. Therefore, the 

problem of obtaining a precise estimation of model parameter under a limited budget of 

experiment becomes an important issue for the engineers. In the literature, some 

researchers took cost considerations into account when reliability plans were designed. 

Some of them are Lui et al. (1993), Tse et al. (2002), Kuş et al. (2011a), Kuş et al. 

(2011b), Akdoğan et al. (2011), Kuş and Akdoğan (2011), Akdoğan and Kuş (2011) and 

Akdoğan (2011). 
 

 In this paper, we will focus on the designing problem of a progressively group-

censored life test under a two-parameter lifetime distribution with bathtub shape or 

increasing failure rate function which was investigated by Chen (2000). In the past 

decade, The Chen distribution attracted many researchers to study on it. Several works of 

statistical inference have been done, for example, Ali Selim (2012), Lee et al. (2007), 

Rastogi et al. (2012), Sahran et al. (2010), Wu et al. (2005), Wu (2008), Wu et al. (2011) 

and Wu et al. (2009). The purpose of this study is to explore the optimum number of test 

units, the number of inspections and the length of inspection intervals with the restriction 

of experimental budget when the lifetimes of test units follow the Chen distribution. A 

mathematical model with decision variables and the cost of the experiment used by Wu  

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=55189829200&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7407089372&zone=
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et al. (2008a) and Wu and Huang (2010) is considered. The method of nonlinear mixed 

integer programming is used to obtain the optimal plans. 
 

 The rest of the paper is organized as follows: The problem is formulated in Section 2 

and the maximum likelihood estimates and interval estimates of the parameters are 

obtained. An algorithm for obtaining the optimal plans is discussed in Section 3. In 

Section 4, a numerical example is discussed. Results of sensitivity analysis are presented 

in Section 5. Finally, concluding remarks are provided to close the paper in Section 6. 

 

2. MODEL DESCRIPTION AND PARAMETER ESTIMATION 
 

 Let the lifetime random variable X  of a test unit have a Chen distribution. The 

probability density function and cumulative distribution function are given, respectively, 

by 
 

       1 exp 1 exp , 0f x x x x x       , 

and 

       1 exp 1 exp , 0,F x x x                (1) 

 

where 0   and 0   are parameters. 
 

 Suppose that n  independent units are simultaneously placed on a life test at time 0

and run until time 1 , at which point the number of failed units 1n  are counted and 1r  

surviving units are removed from the test; starting from time 1 , the 1 1n n r   non-

removed surviving units are run until time 2 , at which point the number of failures 2n  

are counted and 2r  surviving units are removed from the test and so on. At time k , the 

number of failed units kn  are counted and the remaining surviving 
1

1 1

k k

k i j
i j

r n n r


 
      

units are all removed, thereby terminating the test. This scheme is called progressive 

type-I group-censoring and may be depicted pictorially in Figure 1. 

 

 
 

Fig. 1: k -level Progressive Type-I Group-Censoring 
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 The values of 1 2, , , kr r r  are determined by the pre-specified percentages of 

removals of the remaining live units 1 2, , , kp p p  (with 1kp  ); that is, 

 i i i ir m n p  , where 
1 1

1 1

i i

i j j
j j

m n n r
 

 
      is the number of non-removed surviving 

units at the beginning of the i -th stage, for 1, 2, , .i k  Then, we have 
 

   1 1 1 1| , , , , , , ,i i i i iN n n r r Binomial m q              (2) 
 

where             1 1 1/ 1 1 exp exp expi i i i i iq F F F
 

  
            
  

 is the 

probability that a unit survives at time 1i  and will fail before time i , for 1, 2, ,i k , 

where 0 0   and the function  F   is defined in Equation (1). When the lengths of 

inspection intervals are all equal; that is, 1i i     , 1,  2, ,  i k , one has  
 

        1 exp exp exp 1iq i i
  

          
.         (3) 

 

 In this paper, we assume that the lengths of inspection intervals are all equal. This 

assumption is also convenient for practitioners. Based on the observed data and Equation 

(2), the likelihood function is  
 

  
1

( , ) (1 )i i i

k
n m n

ii
i

L q q




     

 

so that log-likelihood function can be written as 
 

    
1

log , log( ) ( ) log(1 )
k

i i i i i
i

L n q m n q


        , 

 

where iq  is defined as in Equation (2). 
 

 Hence we can employ Newton–Raphson method for finding the maximum likelihood 

estimates (MLEs) numerically. That is, we can solve the equations 
 

  
    

 1

log ,

1

k
i ii i i

i i i

L m nn q q

q q

    
  

  
 

and 

  
    

 1

log ,

1

k
i ii i i

i i i

L m nn q q

q q

    
  

  
 

 

by using the second-order derivative forms 
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1

log ,
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k
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, 

 

where 

  
 

 
1

log 1
ii

i

qq
q


  

 
, 

 

         1 exp logi
i

q
q i i i

        
  

 

                exp 1 1 log 1i i i
   

         
, 

 

  
 2

2

log 1 ii i
qq q 


 

, 

 

                
2

2
1 exp log log 1i

i

q
q i i i i i

  
        


  

                  exp 1 1 log 1i i i
  

        

              
2

1
log 1 1 1 ,

1

i

i

q
i i

q

   
      

  
 

and 

  
  2 1 log 1

.
ii i

qq q  


  
 

 

 The asymptotic normality of the MLEs can be derived in the usual way. The Fisher 

information matrix can be obtained by taking the negative of the expectations of the 

second partial derivatives of log-likelihood function. Following the same procedure in 

Wu et al. (2008a), one can obtain the Fisher information matrix based on progressive 

type-I group-censored sample as 
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I , 

where 

       
1

1
1 1 , 1, 2, , .

i

i j j
j

E M n q p i k



      

 

 For a large sample size n , the MLEs  ˆ ˆ,


   have an approximate bivariate normal 

distribution with mean vector  ,    and variance-covariance matrix  1 ,  I , where 

 1 ,  I  is the inverse of Fisher information matrix. In practice, we usually  1 ,  I  

by  1I ,   . Thus, the approximate confidence intervals or confidence region for   and 

  can be easily established. 

 

3. OPTIMAL PLANS 
 

 To obtain a precise estimation of life parameters, frequently asked questions include 

‘How many units does the experimenter need to test?’, ‘How long does the experimenter 

need to run the life test?’ or ‘How many times does the experimenter need to inspect the 

units in the life test?’ Simply put, more test units, more test time and more number of 

inspections will generate more information, which improves the precision of estimates. 

However, in practice, the budget of an experiment is limited. Therefore, the problem of 

obtaining a precise estimation of life parameters under a restricted cost of experiment is 

an important issue for the reliability analyst. 
 

 Let n  denote the number of units on test, k  the number of inspections and   the 

length of inspection interval. The cost of experiment includes the following four parts: 

1) Installation cost: This is the cost of installing all test units at the beginning of the 

life experiment, say aC . It does not depend on the number of test units. 

2) Sample cost: This is the cost of test units. Let sC  be the cost of a test unit. Then, 

the total sample cost is snC . 

3) Inspection cost: This cost includes the cost of using inspection equipment and 

material. It depends on the number of inspections. Let iC  denote the cost of one 

inspection. Then, the total inspection cost is ikC . 

4) Operation cost: This includes salaries of operators, utilities and depreciation of 

test equipment, etc. It is proportional to the testing time. Let oC  be the operation 

cost in the time interval between two inspections. Then, the total operation cost is 

ok C . 
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 Therefore, the total cost of experiment is: 
 

  .T a s i oC C nC kC k C      

 

 Note that the asymptotic variance-covariance matrix  1 ,  I  of the MLEs ̂  and ̂  

is a function of n , k  and  . For a specific plan  , ,n k  , we can compute the asymptotic 

variance-covariance matrix of the MLEs. We want to determine the optimal plan  , ,n k   

under cost considerations. Since the parameter  ,   is two-dimensional, optimality can 

be defined in terms of the following criterion: D-optimality: Minimizing the determinant 

of the asymptotic variance-covariance matrix. D-optimality provides an overall measure 

of variability of the estimates. For simplicity, let  , ,G n k   be the function to be 

minimized in this criterion. Then, the optimal design problem consists in finding n ,  

k and  , which minimize  , ,G n k  . However, the determination of n , k and  , is 

restricted to the budget of experiment, say, rC . Hence, the optimal design problem can 

be expressed as follows: 
 

  minimize ( , , )G n k   

  subject to a s i o rC nC kC k C C      

  ,k n N  and 0,    

 

where N  is the set of positive integers. Since the objective function and constraint are 

both nonlinear functions of decision variables n , k and ,  it is difficult to obtain a 

closed form of the solution. Therefore, in order to find the optimal solution for the 

problem of nonlinear mixed integer programming, a modified algorithm proposed by Kuş 

et al. (2011b) for finding the optimal solution is as follows: 

 

Algorithm 
 

Step 1. Set the values of cost parameters , , ,a s i oC C C C  and rC  and give the 

values parameters  ,  . 

 

Step 2.  Calculate the upper bound of the number of test units. Under the constraint 

of total experimental cost, the upper bound is 
 

  
r a i

s

C C C
n

C

  
  
 

, 

 

 where  x  is greatest integer that is less than or equal to x . Set 2n  . 

 

Step 3.  Compute the upper bound of the number of inspections for a given n . 

Using the constraint of total experimental cost and a given value of n , 

compute the upper bound 
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  r a s
n

i

C C nC
k

C

  
  
 

 

 

Step 4.  Compute the upper bound of the length of inspection interval. Using the 

constraint of total experimental cost, for all k N  1 nk k  , compute the 

upper bound of the length of inspection interval r a s i

o

C C nC kC

kn kC

  
   and 

obtain arg  min  ( , , )G n k
   . 

 

Step 5.  Calculate the corresponding value of objective function  , , knG n k   and 

 , ,G n k  . 

 

Step 6.  If    , , , ,knG n k G n k     and kn
   , set kn

   , else kn kn   . 

 

Step 7.  Let function 
1

( ) ( , , ) min ( , , )
n

n kn knk k
n G n k G n k

 
     . 

 

Step 8.  Set 1n n  . If n n  go to Step 3, else go to Step 9. 

 

Step 9.  Compute the optimal value of objective function *( )n  2min ( )n n n   

* * *( , , )G n k    2min ( , , )n n n knG n k   . 

 

Step 10.  The optimal design  , ,n k    is obtained. 

 

 Note that, in Step 1, the values of   and   are usually unknown. One needs to 

conduct a pilot study or search history results to get the possibly adequate values of them. 

 

4. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 
 

 We apply the proposed methods to a numerical example and use the algorithm from 

Aggarwala (2001) to generate data with 60n  , 10k  , 0.1390  , 2   and 3  . 

The pre-specified percentages of removals are  1 2 3 4 5 6 7 8 9 10, , , , , , , , ,p p p p p p p p p p  

 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,1 . The data are presented in Table 1. 
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Table 1 

Progressively Type-I Group-Censored Sample 
 

i  1 2 3 4 5 6 7 8 9 10 

in  0 0 0 2 2 5 4 10 3 4 

ir  3 2 2 2 2 2 1 1 0 15 

ip  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1 

  

 We obtain the MLEs of   and   to be ˆ 3.6778   and ˆ 1.6048  , respectively. We 

use these estimates in the design of our new experiment. Suppose further the values of 

cost parameters are as follows: 6, 65, 3.25, 10a s i oC C C C     and 4000rC  . Thus, 

the optimal design problem is: 
 

  
 min , ,

6 65 3.25 10 4000

G n k

subject to n k k



    
 

 

 Using the algorithm proposed in Section 4, we can obtain the optimal design as 

follows: 
 

  D-Optimality: 60,n   15,k   0.1122  .  

 

 In the algorithm proposed for searching the optimal solutions, the computation is 

involved with the unknown parameters   and  . As we mentioned in Section 3, prior 

experience or historical data can be used to pre-estimate the parameters. However, these 

estimates, accurately speaking, are not guaranteed to be equal to the unknown 

parameters. In addition, the optimal solution may also be influenced by the values of cost 

parameters. Thus, it is important to study the influence of various estimates and different 

cost values on searching the optimal solutions. 
 

 We now study sensitivity of the optimal solution to changes in the values  

of the different parameters associated with the life experiment. These parameters can be 

divided into two parts: (1) the parameters in the failure time distribution, i.e.,   and  ; 

and (2) the parameters in the cost of experiment, i.e., , , ,a s i oC C C C  and rC . We  

will study how the optimal solution is influenced by the estimates of distribution 

parameters and by the cost parameters of the experiment in Table 2 and Table 3, 

respectively. 
 

 As we mentioned in Section 3, in practice, the values of distribution parameters are 

usually unknown. We have to use prior information or data from a pilot test to get their 

estimates. However, none can guarantee that the estimates are exactly equal to the 
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unknown parameters. Thus, we will discuss the influence of changing values of estimated 

parameters on the optimal solutions. 
 

 The MLEs of   and   obtained in Section 4 are ˆ 1.6048   and ˆ 3.6778  , 

respectively. Thus, the 95% approximate confidence intervals for   and   are 

 1.1279, 2.0816  and  2.5271, 4.8285 , respectively. We choose various values of   and 

  in their 95% approximate confidence intervals for sensitivity analysis. Set 

 , , , ,a s i o rC C C C C =  6, 65,3.25,10, 4000  which are the values of cost parameters used 

in Section 4. We assume that the pre-specified percentages of removals in each stage are 

all equal. That is, 1 2 1kp p p p     and 1kp  . Now, the optimal solutions of n , 

k  and   for 0.05p   are given in Table 2. 

 

Table 2 

Optimal values of n , k  and   for fixed  

6, 65, 3.25, 10a s i oC C C C     and 4000rC   

    n  k    k  D-optimality 

2.5271 

1.1279 60 21 0.1061 2.2281 0.0029 

1.6048 60 12 0.1363 1.6356 0.0055 

2.0816 60 19 0.1490 2.8310 0.0093 

3.6778 

1.1279 60 23 0.0778 1.7894 0.0063 

1.6048 60 15 0.1122 1.6830 0.0116 

2.0816 61 6 0.1583 0.9498 0.0193 

4.8285 

1.1279 60 24 0.0621 1.4904 0.0108 

1.6048 60 15 0.0969 1.4535 0.0198 

2.0816 61 6 0.1456 0.8736 0.0328 

  

 Table 2 shows that n  is not sensitive to the changes in different parameter values. 

The length of inspection interval   is increasing function of   and decreasing function 

of  . The termination time of experiment k  is sensitive to both parameters values. The 

value of D-optimality is also increasing functions of   and  . All comments on Table 2 

are given under D-optimality criterion. 
 

 Changes in cost parameters of the experiment can affect the determination of the 

optimal design. We consider the values of distribution parameters to be 3.6778   and 

1.6048  . Using these values of the distribution parameters, the sensitivity of each of 

the decision variables n , k  and   to changes in the cost parameters of the experiment is 
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examined. Tables 3 shows that a higher value of rC  causes a higher value of n ; the 

number of test units is insensitive to changes in ,i aC C  and oC . Larger value of sC  

results in a smaller value of n . In addition, inspection interval k are sensitive to all cost 

parameters. The length of inspection interval   is almost insensitive.  

 

5. CONCLUSION 
 

 The subject of progressive censoring has received attention in the past few years. The 

Chen distribution can be widely used in reliability applications because of the form of its 

hazard function which is useful in practice. In this paper, we derived the MLEs of the 

parameters of Chen distribution under progressive type-I group-censoring. The 

approximate confidence intervals and region can be easily established. Determining the 

appropriate number of test units, number of inspections and length of inspection interval 

under a limited budget of experiment is an important decision problem for experimenters 

when conducting a life test. Wu et al. (2008a)’s algorithm modified by Kuş et al. (2011b) 

is used to set up the optimal design in this paper. Using this algorithm, we can obtain the 

optimal values of decision variables based on D-Optimality. Since the proposed 

algorithm is needed to provide the values of model parameters before searching the 

optimal solutions, we also studied the sensitivity analysis of cost parameters and 

distribution parameters. The results show that, based on D-optimality criterion, the 

number of test units is not sensitive to the values of distribution parameters, but the 

number of inspections and the length of inspection intervals are influenced by the values 

of distribution parameters. The values of cost parameters have effect on the three decision 

variables. Finally, the proposed approach can lead to better designs for conducting 

progressive type-I group-censoring life tests. It provides an efficient use of one’s 

resources and to achieve the precision that one can expect to have with such a design. 

This approach is intuitive and can be useful to engineers. 
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Table 3 

D-Optimal Values of n , k  and   for Different Costs Values  

under 3.6778   and 1.6048   

rC  sC  iC  oC  aC  n  k    D-optimality 

1000 65 3.25 10 6 14 18 0.1122 0.2136 

2000     30 10 0.1140 0.0465 

3000     45 15 0.1122 0.0207 

4000     60 15 0.1122 0.0116 

5000     76 12 0.1122 0.0072 

6000     91 17 0.1122 0.0051 

         

4000 45 3.25 10 6 87 17 0.1122 0.0055 

 55    72 7 0.1373 0.0083 

 65    60 15 0.1122 0.0116 

 75    52 9 0.1185 0.0155 

 85    46 8 0.1263 0.0198 

 95    41 15 0.1122 0.0249 

         

4000 65 2.25 10 6 61 8 0.1262 0.0114 

  2.75   61 7 0.1373 0.0116 

  3.25   60 15 0.1122 0.0116 

  3.75   60 14 0.1122 0.0116 

  4.25   60 14 0.1122 0.0116 

  4.75   60 14 0.1122 0.0116 

  5.25   60 13 0.1122 0.0116 

         

4000 65 3.25 7 6 60 19 0.1122 0.0116 

   8  60 18 0.1122 0.0116 

   9  60 14 0.1122 0.0116 

   10  60 15 0.1122 0.0116 

   11  60 17 0.1122 0.0116 

   12  60 15 0.1122 0.0116 

   13  60 14 0.1122 0.0116 

         

4000 65 3.25 10 3 61 7 0.1321 0.0116 

    4 60 17 0.1122 0.0116 

    5 60 17 0.1122 0.0116 

    6 60 15 0.1122 0.0116 

    7 60 19 0.1122 0.0116 

    8 60 20 0.1122 0.0116 

    9 60 16 0.1122 0.0116 
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